1
|
Fahimirad S, Satei P, Latifi A, Changizi-Ashtiyani S, Bahrami M, Abtahi H. Electrospun PCL/PVA/PHMB nanofibers incorporating Ziziphus jujuba fruit extract as promising wound dressings with potent antibacterial and antidiabetic properties. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:2484-2505. [PMID: 39088278 DOI: 10.1080/09205063.2024.2384299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
This investigation examined the potential antibacterial and antidiabetic effects of wound dressings created using electrospun nanofibers containing Ziziphus jujuba fruit extract (ZJ). These nanofibers were composed of a combination of Polycaprolactone (PCL), Polyvinyl Alcohol (PVA), and Polyhexamethylene Biguanide (PHMB). The process of creating these nanofibers involved electrospinning. The nanofiber products, which included PCL, PCL/PVA, PCL/PVA/ZJ, PCL/PVA/PHMB, and PCL/PVA/PHMB/ZJ, underwent a morphology, physicochemical, and biological assessment. Incorporating PHMB into the nanofibers enhanced the antibacterial properties, effectively preventing bacterial infections in wounds. Furthermore, including ZJ fruit extract in the nanofibers provided antidiabetic properties, making these dressings suitable for diabetic patients. The PCL/PVA/PHMB/ZJ combination exhibited exceptional healing capabilities and superior antibacterial efficiency in MRSA-infected wounds. The histological assay confirmed complete wound healing by day 14, accompanied by reduced inflammation. Based on these findings, using PCL/PVA/PHMB/ZJ as innovative wound dressings is recommended, as they can expedite wound healing while offering significant antidiabetic and antibacterial features. Ultimately, these electrospun nanofibers possess the potential to serve as advanced wound dressings with enhanced antibacterial and anti-diabetes properties.
Collapse
Affiliation(s)
- Shohreh Fahimirad
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Parastu Satei
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Amirhossein Latifi
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Saeed Changizi-Ashtiyani
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Mohsen Bahrami
- Traditional and Complementary Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
2
|
Buta MR, Donelan MB. Evolution of Burn Care: Past, Present, and Future. Clin Plast Surg 2024; 51:191-204. [PMID: 38429043 DOI: 10.1016/j.cps.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Burn care evolved slowly from primitive treatments depicted in cave drawings 3500 years ago to a vibrant medical specialty which has made remarkable progress over the past 200 years. This evolution involved all areas of burn care including superficial dressings, wound assessment, fluid resuscitation, infection control, pathophysiology, nutritional support, burn surgery, and inhalation injury. Major advances that contributed to current standards of care and improved outcomes are highlighted in this article. New innovations are making possible a future where severe burn injuries will require less morbid interventions for acute care and outcomes will restore patients more closely to their pre-injury condition.
Collapse
Affiliation(s)
- Martin R Buta
- Plastic, Reconstructive, and Laser Surgery, Shriners Hospitals for Children, Boston, MA, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA, USA
| | - Matthias B Donelan
- Plastic, Reconstructive, and Laser Surgery, Shriners Hospitals for Children, Boston, MA, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Gibson ALF. Living Skin Substitute Tissue-Is a Replacement for the Autograft Possible? EUROPEAN BURN JOURNAL 2023; 4:492-500. [PMID: 39599941 PMCID: PMC11571827 DOI: 10.3390/ebj4030031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/05/2023] [Accepted: 09/01/2023] [Indexed: 11/29/2024]
Abstract
The ideal living tissue skin substitute for use in burn injury does not yet exist. The currently available alternatives to autologous skin grafting require an understanding of their characteristics and limitations to make an informed decision of surgical treatment options. In this review, living tissue substitutes are categorized by autologous and allogeneic cell sources and epidermal-only versus bilayered tissue options. A short summary of the tissue composition, clinical data, and indications is provided. Finally, the gap in technology is defined and future potential areas of research are explored.
Collapse
Affiliation(s)
- Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI 53792, USA
| |
Collapse
|
4
|
Capelli C, Cuofano C, Pavoni C, Frigerio S, Lisini D, Nava S, Quaroni M, Colombo V, Galli F, Bezukladova S, Panina-Bordignon P, Gaipa G, Comoli P, Cossu G, Martino G, Biondi A, Introna M, Golay J. Potency assays and biomarkers for cell-based advanced therapy medicinal products. Front Immunol 2023; 14:1186224. [PMID: 37359560 PMCID: PMC10288881 DOI: 10.3389/fimmu.2023.1186224] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023] Open
Abstract
Advanced Therapy Medicinal Products (ATMPs) based on somatic cells expanded in vitro, with or without genetic modification, is a rapidly growing area of drug development, even more so following the marketing approval of several such products. ATMPs are produced according to Good Manufacturing Practice (GMP) in authorized laboratories. Potency assays are a fundamental aspect of the quality control of the end cell products and ideally could become useful biomarkers of efficacy in vivo. Here we summarize the state of the art with regard to potency assays used for the assessment of the quality of the major ATMPs used clinic settings. We also review the data available on biomarkers that may substitute more complex functional potency tests and predict the efficacy in vivo of these cell-based drugs.
Collapse
Affiliation(s)
- Chiara Capelli
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Carolina Cuofano
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Chiara Pavoni
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Simona Frigerio
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Lisini
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Nava
- Cell Therapy Production Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Michele Quaroni
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Valentina Colombo
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Francesco Galli
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
| | - Svetlana Bezukladova
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Paola Panina-Bordignon
- Università Vita-Salute San Raffaele, Milan, Italy
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
| | - Giuseppe Gaipa
- Laboratory of Cell and Gene Therapy Stefano Verri, ASST Monza Ospedale San Gerardo, Monza, Italy
| | - Patrizia Comoli
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giulio Cossu
- Division of Cell Matrix Biology & Regenerative Medicine, Faculty of Biology, Medicine and Health (FBMH), University of Manchester, Manchester, United Kingdom
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Gianvito Martino
- IRCCS San Raffaele Hospital, Neuroimmunology Unit, Division of Neuroscience, Milan, Italy
- Pediatric Hematology/Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Andrea Biondi
- Department of Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|