1
|
Zhang Y, Li X, Yu Q, Lv X, Li C, Wang L, Liu Y, Wang Q, Yang Z, Fu X, Xiao R. Using network pharmacology to discover potential drugs for hypertrophic scars. Br J Dermatol 2024; 191:592-604. [PMID: 38820210 DOI: 10.1093/bjd/ljae234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
BACKGROUND Hypertrophic scarring is a disease of abnormal skin fibrosis caused by excessive fibroblast proliferation. Existing drugs have not achieved satisfactory therapeutic effects. OBJECTIVES To explore the molecular pathogenesis of hypertrophic scars and screen effective drugs for their treatment. METHODS Existing human hypertrophic scar RNA sequencing data were utilized to search for hypertrophic scar-related gene modules and key genes through weighted gene co-expression network analysis (WGCNA). Candidate compounds were screened in a compound library. Potential drugs were screened by molecular docking and verified in human hypertrophic scar fibroblasts and a mouse mechanical force hypertrophic scar model. RESULTS WGCNA showed that hypertrophic scar-associated gene modules influence focal adhesion, the transforming growth factor (TGF)-β signalling pathway and other biologic pathways. Integrin β1 (ITGB1) is the hub protein. Among the candidate compounds obtained by computer virtual screening and molecular docking, crizotinib, sorafenib and SU11274 can inhibit the proliferation and migration of human hypertrophic scar fibroblasts and profibrotic gene expression. Crizotinib had the best effect on hypertrophic scar attenuation in mouse models. At the same time, mouse ITGB1 small interfering RNA can also inhibit mouse scar hyperplasia. CONCLUSIONS ITGB1 and TGF-β signalling pathways are important for hypertrophic scar formation. Crizotinib could be a potential treatment drug for hypertrophic scars.
Collapse
Affiliation(s)
- Yi Zhang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xiu Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Qian Yu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Xiaoyan Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Chen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Lianzhao Wang
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Yue Liu
- Department of Plastic Surgery, Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of External Tissue and Organ Regeneration, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
2
|
Zhang Y, Liu E, Gao H, He Q, Chen A, Pang Y, Zhang X, Bai S, Zeng J, Guo J. Natural products for the treatment of hypertrophic scars: Preclinical and clinical studies. Heliyon 2024; 10:e37059. [PMID: 39296083 PMCID: PMC11408005 DOI: 10.1016/j.heliyon.2024.e37059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hypertrophic scarring (HS) is a complication of wound healing that causes physiological and psychological distress in patients. However, the possible mechanism underlying HS is not fully understood, and there is no gold standard for its treatment. Natural products are more effective, economical, convenient, and safe than existing drugs, and they have a wide application prospect. However, there is a lack of literature on this topic, so we reviewed in vivo, in vitro, and clinical studies and screened natural products showing beneficial effects on HS that can become potential therapeutic agents for HS to fill in the gaps in the field. In addition, we discussed the drug delivery systems related to these natural products and their mechanisms in the treatment of HS. Generally speaking, natural products inhibit inflammation, myofibroblast activation, angiogenesis, and collagen accumulation by targeting interleukins, tumor necrosis factor-α, vascular endothelial growth factors, platelet-derived growth factors, and matrix metalloproteinases, so as to play an anti-HS effects of natural products are attributed to their anti-inflammatory, anti-proliferative, anti-angiogenesis, and pro-apoptotic (enhancing apoptosis and autophagy) roles, thus treating HS. We also screened the potential therapeutic targets of these natural compounds for HS through network pharmacology and constructed a protein-protein interaction (PPI) network, which may provide clues for the pharmacological mechanism of natural products in treating this disease and the development and application of drugs.
Collapse
Affiliation(s)
- Yuxiao Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - E Liu
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | | | - Qingying He
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Anjing Chen
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Yaobing Pang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Xueer Zhang
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Sixian Bai
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| | - Jing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine Department of Dermatology, China
| |
Collapse
|
3
|
Donelan MB, Buta MR. The Art of Local Tissue Rearrangements in Burn Reconstruction: Z-Plasty and More. Clin Plast Surg 2024; 51:329-347. [PMID: 38789143 DOI: 10.1016/j.cps.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
In recent decades, advances in surgical anatomy, burn pathophysiology, surgical techniques, and laser therapy have led to a paradigm shift in how we approach burn scars and contractures. Scar excision and replacement with uninjured tissue, which predominated burn scar treatment for much of the 20th century, is no longer appropriate in many patients. A scar's intrinsic ability to remodel can be induced by reducing tension on the scar using various techniques for local tissue rearrangement. Often in combination with laser therapy, local flaps can optimally camouflage a burn scar with adjacent normal tissue and restore a patient more closely to their preinjury condition.
Collapse
Affiliation(s)
- Matthias B Donelan
- Plastic, Reconstructive, and Laser Surgery, Shriners Hospitals for Children, 51 Blossom Street, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA.
| | - Martin R Buta
- Plastic, Reconstructive, and Laser Surgery, Shriners Hospitals for Children, 51 Blossom Street, Boston, MA 02114, USA; Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, 51 Blossom Street, Boston, MA 02114, USA; Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
4
|
Guo C, Liu X, Qiu K, Tu L, Liu D. MALAT1 Knockdown Inhibits the Proliferation, Migration, and Collagen Deposition of Human Hypertrophic Scar Fibroblasts via Targeting miR-29a-3p/Smurf2 Axis. Clin Cosmet Investig Dermatol 2024; 17:1387-1404. [PMID: 38881700 PMCID: PMC11180437 DOI: 10.2147/ccid.s460845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/06/2024] [Indexed: 06/18/2024]
Abstract
Purpose Hypertrophic scarring (HS) is commonly described as an abnormal post-traumatic tissue repair characterized by excessive hypercellularity and extracellular matrix (ECM) deposition. Mounting evidence suggests that MALAT1 is maladjusted in many fibrotic diseases, but its contribution to HS progression remains poorly understood. Hence, we sought to elucidate the fundamental role of MALAT1 in HS. Methods The expression of MALAT1, miR-29a-3p, and Smurf2 in skin tissues and fibroblasts was assessed by RT-qPCR and Western blotting. Furthermore, lentiviruses, RNAi, or plasmids were utilized to transfect hypertrophic scar fibroblasts (HSFs) for gene overexpression or downregulation. The biological behaviors of HSFs were quantified by the CCK-8 assay, wound healing assay, transwell assay, and flow cytometry. Mechanistically, bioinformatics analysis, dual-luciferase reporter assays, and rescue experiments were performed to verify the relationship between miR-29a-3p and MALAT1 or Smurf2. Results Our data indicate that MALAT1, Smurf2 were overexpressed while miR-29a-3p was suppressed in HS tissues and fibroblasts. Downregulation of MALAT1 may lead to decreased proliferation, migration, and invasion of fibroblasts, accompanied by enhanced apoptosis, reduced TGF-β signal transduction, and ECM accumulation in HSFs, by enhancing miR-29a-3p and suppressing Smurf2 expression. Mechanistically, MALAT1 acted as a sponge for miR-29a-3p, while miR-29a-3p directly targeted Smurf2. More importantly, rescue experiments suggested that MALAT1 downregulation induced impact on the proliferation, migration, and invasion of HSFs could be partially overturned through miR-29a-3p knockdown or Smurf2 overexpression. Conclusion MALAT1 knockdown inhibits the proliferation, migration, invasion, and collagen deposition of HSFs via targeting the miR-29a-3p/Smurf2 axis, which may reveal a promising therapeutic exploitable vulnerability to HS.
Collapse
Affiliation(s)
- Chunyan Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Xiaoxiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Keqing Qiu
- Department of Dermatology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Longxiang Tu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| | - Dewu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, People's Republic of China
| |
Collapse
|
5
|
Alhanshali L, Khachemoune A. Clinical dermatologic applications of ginger: a focused review. Int J Dermatol 2024; 63:438-442. [PMID: 38102859 DOI: 10.1111/ijd.16963] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/15/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Ginger is a traditional herb with medicinal properties. Although most commonly utilized as a spice, it has been used for various medicinal ailments for thousands of years. Over the past century, the anti-inflammatory, antioxidative, and antimicrobial properties of ginger have been increasingly studied. Ginger has been demonstrated to be beneficial for many conditions including dermatologic, gastrointestinal, neoplastic, and respiratory diseases. Herein, we examine the existing literature regarding the clinical uses of ginger with a focus on its dermatologic applications.
Collapse
Affiliation(s)
- Lina Alhanshali
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Amor Khachemoune
- Department of Dermatology, SUNY Downstate Medical Center, Brooklyn, NY, USA
- Department of Dermatology, State University of New York Downstate, Veterans Affairs Medical Center, Brooklyn, NY, USA
| |
Collapse
|
6
|
He T, Bai X, Li Y, Zhang D, Xu Z, Yang X, Hu D, Han J. Insufficient SIRT1 in macrophages promotes oxidative stress and inflammation during scarring. J Mol Med (Berl) 2023; 101:1397-1407. [PMID: 37707556 DOI: 10.1007/s00109-023-02364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/15/2023]
Abstract
Macrophage is a critical regulator in wound healing and scar formation, and SIRT1 is related to macrophage activation and polarization, while the specific mechanism is still unclear. To explore the specific effects of SIRT1 in scarring, we established a skin incision mouse model and LPS-induced inflammation cell model. The expression of SIRT1 in tissue and macrophage was detected, and the level of SIRT1 was changed to observe the downstream effects. LPS-induced macrophages with or without SIRT1 deficiency were used for TMT-based quantitative proteomic analysis. SIRT1 was suppressed in scar while increased in macrophages of scar tissue. And macrophages were proven to be necessary for wound healing. In the early stage of wound healing, knockout of SIRT1 in macrophage could greatly strengthen inflammation and finally promote scarring. NADH-related activities and oxidoreductase activities were differentially expressed in TMT-based quantitative proteomic analysis. We confirmed that ROS production and NOX2 level were elevated after LPS stimulation while the Nrf2 pathway and the downstream proteins, such as Nqo-1 and HO-1, were suppressed. In contrast, the suppression of SIRT1 strengthened this trend. The NF-κB pathway was remarkably activated compared with the control group. Insufficient increase of SIRT1 in macrophage leads to over activated oxidative stress and activates NF-κB pathways, which then promotes inflammation in wound healing and scarring. Further increasing SIRT1 in macrophages could be a promising method to alleviate scarring. KEY MESSAGES: SIRT1 was suppressed in scar while increased in macrophages of scar tissue. Inhibition of SIRT1 in macrophage leads to further activated oxidative stress. SIRT1 is negatively related to oxidative stress in macrophage. The elevation of SIRT1 in macrophage is insufficient during scarring.
Collapse
Affiliation(s)
- Ting He
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xiaozhi Bai
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Yan Li
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dongliang Zhang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Zhigang Xu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Xuekang Yang
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China
| | - Dahai Hu
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| | - Juntao Han
- Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, 127 Changle West Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
7
|
Lo C, Wagstaff M, Barker T, Damkat-Thomas L, Salerno S, Holden D, Concannon E, Heath K, Coghlan P, Cleland H. Long-term scarring outcomes and safety of patients treated with NovoSorb Ⓡ Biodegradable Temporizing Matrix (BTM): An observational cohort study. JPRAS Open 2023; 37:42-51. [PMID: 37360978 PMCID: PMC10285497 DOI: 10.1016/j.jpra.2023.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/18/2023] [Indexed: 06/28/2023] Open
Abstract
Background/Aim NovoSorbⓇ Biodegradable Temporizing Matrix (BTM) is a relatively novel, biodegradable polyurethane-based dermal regeneration template. The aim of this study was to evaluate the long-term scarring outcomes and safety of BTM in patients who underwent dermal reconstruction involving ≥5% of the total body surface area. Methods This was a postmarket, multicenter, observational cohort study involving evaluation of long-term outcomes in patients treated with BTM. A total of 55 patients (35 from Royal Adelaide Hospital, South Australia, and 20 from Victoria Adult Burns Service, The Alfred, Victoria) who underwent dermal repair with BTM between 2011 and 2017 were screened for inclusion in this study. All patients had BTM implanted for ≥18 months. Results Fifteen eligible patients with a mean (SD) age of 49.1 (14.3) years completed study assessments. These patients had a total of 39 areas treated with BTM. Using the Patient and Observer Scar Assessment Scale, scar quality was reported to be good by both observers and patients, with a mean (SD) observer score across all lesions of 3.6 (1.2) and mean (SD) overall opinion of 3.8 (1.2) as well as a mean (SD) patient score of 3.5 (1.2) and overall opinion of 5.0 (2.2). No adverse events or adverse device effects were reported or identified. Conclusion The long-term scar quality is comparable to published studies. BTM is safe in the long term with no additional risks or adverse consequences being identified.
Collapse
Affiliation(s)
- C.H. Lo
- Victorian Adult Burns Service, The Alfred, 55 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Surgery, Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - M.J.D. Wagstaff
- Adult Burns Service and Department of Plastic and Reconstructive Surgery, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | - T.M. Barker
- PolyNovo Biomaterials Pty Ltd, 2/320 Lorimer Street, Port Melbourne, VIC 3207, Australia
| | - L. Damkat-Thomas
- Adult Burns Service and Department of Plastic and Reconstructive Surgery, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | - S. Salerno
- Victorian Adult Burns Service, The Alfred, 55 Commercial Rd, Melbourne, VIC 3004, Australia
| | - D. Holden
- Victorian Adult Burns Service, The Alfred, 55 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Surgery, Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| | - E. Concannon
- Adult Burns Service and Department of Plastic and Reconstructive Surgery, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | - K. Heath
- Adult Burns Service and Department of Plastic and Reconstructive Surgery, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | - P. Coghlan
- Adult Burns Service and Department of Plastic and Reconstructive Surgery, Royal Adelaide Hospital, Port Rd, Adelaide, SA 5000, Australia
| | - H. Cleland
- Victorian Adult Burns Service, The Alfred, 55 Commercial Rd, Melbourne, VIC 3004, Australia
- Department of Surgery, Central Clinical School, Monash University, 99 Commercial Rd, Melbourne, VIC 3004, Australia
| |
Collapse
|
8
|
Kim J, Oh I, Lee YN, Lee JH, Lee YI, Kim J, Lee JH. Predicting the severity of postoperative scars using artificial intelligence based on images and clinical data. Sci Rep 2023; 13:13448. [PMID: 37596459 PMCID: PMC10439171 DOI: 10.1038/s41598-023-40395-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 08/09/2023] [Indexed: 08/20/2023] Open
Abstract
Evaluation of scar severity is crucial for determining proper treatment modalities; however, there is no gold standard for assessing scars. This study aimed to develop and evaluate an artificial intelligence model using images and clinical data to predict the severity of postoperative scars. Deep neural network models were trained and validated using images and clinical data from 1283 patients (main dataset: 1043; external dataset: 240) with post-thyroidectomy scars. Additionally, the performance of the model was tested against 16 dermatologists. In the internal test set, the area under the receiver operating characteristic curve (ROC-AUC) of the image-based model was 0.931 (95% confidence interval 0.910‒0.949), which increased to 0.938 (0.916‒0.955) when combined with clinical data. In the external test set, the ROC-AUC of the image-based and combined prediction models were 0.896 (0.874‒0.916) and 0.912 (0.892‒0.932), respectively. In addition, the performance of the tested algorithm with images from the internal test set was comparable with that of 16 dermatologists. This study revealed that a deep neural network model derived from image and clinical data could predict the severity of postoperative scars. The proposed model may be utilized in clinical practice for scar management, especially for determining severity and treatment initiation.
Collapse
Affiliation(s)
- Jemin Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Inrok Oh
- LG Chem Ltd., Seoul, South Korea
| | - Yun Na Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Joo Hee Lee
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Young In Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Jihee Kim
- Department of Dermatology, Yongin Severance Hospital, Yonsei University College of Medicine, Yongin-si, Gyeonggi-do, South Korea
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea
| | - Ju Hee Lee
- Scar Laser and Plastic Surgery Center, Yonsei Cancer Hospital, Yonsei University College of Medicine, Seoul, South Korea.
- Department of Dermatology and Cutaneous Biology Research Institute, Severance Hospital, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
9
|
Ma L, Hua L, Yu W, Ke L, Li LY. TSG-6 inhibits hypertrophic scar fibroblast proliferation by regulating IRE1α/TRAF2/NF-κB signalling. Int Wound J 2023; 20:1008-1019. [PMID: 36056472 PMCID: PMC10031217 DOI: 10.1111/iwj.13950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/29/2022] Open
Abstract
TNF-stimulated gene (TSG-6) was reported to suppress hypertrophic scar (HS) formation in a rabbit ear model, and the overexpression of TSG-6 in human HS fibroblasts (HSFs) was found to induce their apoptotic death. The molecular basis for these findings, however, remains to be clarified. HSFs were subjected to TSG-6 treatment. Treatment with TSG-6 significantly suppressed HSF proliferation and induced them to undergo apoptosis. Moreover, TSG-6 exposure led to reductions in collagen I, collagen III, and α-SMA mRNA and protein levels, with a corresponding drop in proliferating cell nuclear antigen (PCNA) expression indicative of impaired proliferative activity. Endoplasmic reticulum (ER) stress was also suppressed in these HSFs as demonstrated by decreases in Bip and p-IRE1α expression, downstream inositol requiring enzyme 1 alpha (IRE1α) -Tumor necrosis factor receptor associated factor 2 (TRAF2) pathway signalling was inhibited and treated cells failed to induce NF-κB, TNF-α, IL-1β, and IL-6 expression. Overall, ER stress was found to trigger inflammatory activity in HSFs via the IRE1α-TRAF2 axis, as confirmed with the specific inhibitor of IRE1α STF083010. Additionally, the effects of TSG-6 on apoptosis, collagen I, collagen III, α-SMA, and PCNA of HSFs were reversed by the IRE1α activator thapsigargin (TG). These data suggest that TSG-6 administration can effectively suppress the proliferation of HSFs in part via the inhibition of IRE1α-mediated ER stress-induced inflammation (IRE1α/TRAF2/NF-κB signalling).
Collapse
Affiliation(s)
- Li Ma
- Clinical College of Integrated Traditional Chinese and Western Medicine, Anhui University of Traditional Chinese Medicine, Hefei, China
| | - Lei Hua
- Department of Neurology, the Affiliated Nanjing city Hospital of Chinese Medicine of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenyuan Yu
- Department of Plastic and Cosmetic Surgery, the Second Affiliated Hospital of Soochow University, SuZhou City, PR China
| | - Li Ke
- Department of Thoracic Surgery, the First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Hospital), Hefei, China
| | - Liang-Yong Li
- Department of Neurology, the First Affiliated Hospital of Anhui University of Traditional Chinese Medicine, Hefei, China
| |
Collapse
|
10
|
Vorstandlechner V, Copic D, Klas K, Direder M, Golabi B, Radtke C, Ankersmit HJ, Mildner M. The Secretome of Irradiated Peripheral Mononuclear Cells Attenuates Hypertrophic Skin Scarring. Pharmaceutics 2023; 15:pharmaceutics15041065. [PMID: 37111549 PMCID: PMC10143262 DOI: 10.3390/pharmaceutics15041065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/15/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Hypertrophic scars can cause pain, movement restrictions, and reduction in the quality of life. Despite numerous options to treat hypertrophic scarring, efficient therapies are still scarce, and cellular mechanisms are not well understood. Factors secreted by peripheral blood mononuclear cells (PBMCsec) have been previously described for their beneficial effects on tissue regeneration. In this study, we investigated the effects of PBMCsec on skin scarring in mouse models and human scar explant cultures at single-cell resolution (scRNAseq). Mouse wounds and scars, and human mature scars were treated with PBMCsec intradermally and topically. The topical and intradermal application of PBMCsec regulated the expression of various genes involved in pro-fibrotic processes and tissue remodeling. We identified elastin as a common linchpin of anti-fibrotic action in both mouse and human scars. In vitro, we found that PBMCsec prevents TGFβ-mediated myofibroblast differentiation and attenuates abundant elastin expression with non-canonical signaling inhibition. Furthermore, the TGFβ-induced breakdown of elastic fibers was strongly inhibited by the addition of PBMCsec. In conclusion, we conducted an extensive study with multiple experimental approaches and ample scRNAseq data demonstrating the anti-fibrotic effect of PBMCsec on cutaneous scars in mouse and human experimental settings. These findings point at PBMCsec as a novel therapeutic option to treat skin scarring.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Medicine III, Division of Nephrology and Dialysis, Medical University of Vienna, 1090 Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
- Department of Orthopedics and Trauma-Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, 1090 Vienna, Austria
- Aposcience AG, 1200 Vienna, Austria
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, 1090 Vienna, Austria
- Correspondence:
| |
Collapse
|
11
|
Clarifying sleep characteristics and analyzing risk factors of sleep disorders to promote a predictive, preventive, and personalized medicine in patients with burn scars. EPMA J 2023; 14:131-142. [PMID: 36684850 PMCID: PMC9838372 DOI: 10.1007/s13167-022-00309-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023]
Abstract
Purpose This study assessed sleep quality in patients with burn scars and investigated risk factors of sleep disorders to guide clinical therapy. From the strategy of predictive, preventive, and personalized medicine (PPPM/3PM), we proposed that risk assessment based on clinical indicators could prompt primary prediction, targeted prevention, and personalized interventions to improve the management of sleep disorders present in patients with burn scars. Methods This retrospective study recruited patients with burn scars and healthy volunteers from the Shanghai Burn Treatment Center between 2017 and 2022. Relevant information and data, including demographic characteristics, scar evaluation, and sleep quality, were obtained through the hospital information system, classical scar scale, and self-report questionnaires. Sleep quality was assessed using the Pittsburgh Sleep Quality Index (PSQI) and monitored using a cardiopulmonary-coupled electrocardiograph. Pain and pruritus were assessed using the visual analog scale (VAS). Scar appearance was assessed using the modified Vancouver scar scale (mVSS). Results The sample was comprised of 128 hypertrophic scar (HS) patients, with 61.7% males, a mean age of 41.1 ± 11.6 years, and burn area of 46.2 ± 27.9% total body surface area (TBSA). Patients with PSQI ≥ 7 accounted for 76.6%, and the global PSQI score was 9.4 ± 4.1. Objective sleep data showed that initial enter deep sleep time, light sleep time, awakening time, light sleep efficiency, and sleep apnea index were higher but deep sleep time, sleep efficiency, and deep sleep efficiency were lower in HS patients than that in healthy controls. Preliminary univariate analysis showed that age, hyperplasia time of scar, narrow airway, microstomia, VAS for pain and pruritus, and mVSS total (comprised of pigmentation, vascularity, height and pliability) were associated with the PSQI score (p < 0.1). Multivariable linear regression showed narrow airway, VAS for pain and pruritus, and mVSS specifically height, were the risk factors for PSQI score (p < 0.1). Conclusions This study model identified that narrow airway, pain, pruritus and scar appearance specifically height may provide excellent predictors for sleep disorders in HS patients. Our results provided a basis for the predictive diagnostics, targeted prevention, and individualized therapy of somnipathy predisposition and progression of HS patients in the setting of PPPM/3PM health care system, which contributed to a paradigm shift from reactive cure to advanced therapy.
Collapse
|
12
|
Concentration-Dependent Inhibition of Hypertrophic Scar Formation by Botulinum Toxin Type A in a Rabbit Ear Model. Aesthetic Plast Surg 2022; 46:3072-3079. [PMID: 35864206 DOI: 10.1007/s00266-022-03008-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Hypertrophic scar (HS), as a disappointing result of wound healing, adversely affects the patient, both physically and psychologically. Botulinum toxin type A (BTXA) has been revealed to prevent and improve HS. We conducted this study to assess the effect of different BTXA concentrations on inhibiting HS in a rabbit ear model. METHODS Eight healthy New Zealand long-eared rabbits were included in the experiment for modeling. Four wounds of 1 cm in diameter were created on both ears, which separately received an injection of a given BTXA concentration immediately after surgery. On postoperative days 40, scar tissue was obtained and subjected to hematoxylin and eosin (HE) staining for the hypertrophic index (HI) and immunohistochemical staining for CD31, Ki67, and transforming growth factor-beta 1 (TGF-β1) expression. The HI was assessed for scar proliferation, and CD31 and Ki67 expression were used to assess the effect of BTXA on angiogenesis and fibroblast proliferation, respectively. RESULTS All rabbits healed well without infection or mortality. From the HE staining, the HI showed a significant decrease with increasing BTXA concentration (p < 0.05). BTXA also inhibited angiogenesis and TGF-β1 expression in a concentration-dependent manner, with significant differences between the groups (p < 0.05). BTXA inhibited fibroblast proliferation with increasing BTXA concentration. However, there was no significant difference between the 0.5 U/0.1 ml and 0 U/0.1 ml groups (p > 0.05). CONCLUSION Immediate postoperative BTXA injection inhibited angiogenesis, fibroblast proliferation, and TGF-β1 expression in a concentration-dependent manner, thus suppressing HS formation in rabbit ears. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors https://www.springer.com/journal/00266 .
Collapse
|
13
|
León-Sosa A, Castañeda V, Espinosa-Vallejo R, Gómez X, Díaz RF, Cabrera F, Caicedo A. Key points for translating wound regenerative agents from in vivo assays in mice to clinical validation. Cytotherapy 2022; 24:1074-1086. [DOI: 10.1016/j.jcyt.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/07/2022] [Accepted: 07/16/2022] [Indexed: 11/29/2022]
|
14
|
Angiogenic gene characterization and vessel permeability of dermal microvascular endothelial cells isolated from burn hypertrophic scar. Sci Rep 2022; 12:12222. [PMID: 35851095 PMCID: PMC9293893 DOI: 10.1038/s41598-022-16376-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Hypertrophic scar (HTS) formation is a common challenge for patients after burn injury. Dermal microvascular endothelial cells (DMVECs) are an understudied cell type in HTS. An increase in angiogenesis and microvessel density can be observed in HTS. Endothelial dysfunction may play a role in scar development. This study aims to generate a functional and expression profile of HTS DMVECs. We hypothesize that transcript and protein-level responses in HTS DMVECs differ from those in normal skin (NS). HTSs were created in red Duroc pigs. DMVECs were isolated using magnetic-activated cell sorting with ulex europaeus agglutinin 1 (UEA-1) lectin. Separate transwell inserts were used to form monolayers of HTS DMVECs and NS DMVECs. Cell injury was induced and permeability was assessed. Gene expression in HTS DMVECS versus NS DMVECs was measured. Select differentially expressed genes were further investigated. HTS had an increased area density of dermal microvasculature compared to NS. HTS DMVECs were 17.59% less permeable than normal DMVECs (p < 0.05). After injury, NS DMVECs were 28.4% and HTS DMVECs were 18.8% more permeable than uninjured controls (28.4 ± 4.8 vs 18.8 ± 2.8; p = 0.11). PCR array identified 31 differentially expressed genes between HTS and NS DMVECs, of which 10 were upregulated and 21 were downregulated. qRT-PCR and ELISA studies were in accordance with the array. DMVECs expressed a mixed profile of factors that can contribute to and inhibit scar formation. HTS DMVECs have both a discordant response to cellular insults and baseline differences in function, supporting their proposed role in scar pathology. Further investigation of DMVECs is warranted to elucidate their contribution to HTS pathogenesis.
Collapse
|
15
|
Is massage an effective intervention in the management of post-operative scarring? A scoping review. J Hand Ther 2022; 35:186-199. [PMID: 35227556 DOI: 10.1016/j.jht.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/21/2021] [Accepted: 01/21/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND Scar massage is a widely used treatment modality in hand therapy. This intervention is thoroughly discussed in the literature relating to burns rehabilitation, however, the evidence for its use in treating linear scars following surgery is limited. PURPOSE OF STUDY To collate the empirical literature on scar massage for the treatment of postsurgical cutaneous scars. STUDY DESIGN Scoping review. METHODS Medline, EMBASE, CINAHL, AMED, Scopus, ProQuest Dissertations & Theses Global, and the Joanna Briggs Institute were searched from inception to December 2020. Two researchers used a data extraction tool to record key demographic, intervention and outcome data, and to apply the Oxford Levels of Evidence for each study. RESULTS Twenty-five studies met the inclusion criteria, reporting on a combined sample of 1515 participants. Only two papers addressed hand or wrist scars (92 participants). While all studies reported favorable outcomes for scar massage, there were 45 different outcome measures used and a propensity towards non-standardized assessment. Intervention protocols varied from a single session to three treatments daily for 6 months. The results from 13 studies were confounded by the implementation of additional rehabilitation interventions. CONCLUSIONS The overall findings suggest that while there may be benefits to scar massage in reducing pain, increasing movement and improving scar characteristics; there is a lack of consistent research methods, intervention protocols and outcome measures. This scoping review highlights the heterogenous nature of research into scar massage following surgery and supports the need for further research to substantiate its use in the clinical setting.
Collapse
|
16
|
Nidhal Ghazy D, Rahmah Abu-Raghif A. Effects of Apremilast on Induced Hypertrophic Scar of Rabbits. ARCHIVES OF RAZI INSTITUTE 2021; 76:1803-1813. [PMID: 35546978 PMCID: PMC9083860 DOI: 10.22092/ari.2021.356195.1800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 05/29/2023]
Abstract
The present study aimed to assess the effect of Apremilast on experimentally induced hypertrophic scars in rabbits. A total of 40 healthy male New Zealand White rabbits between 6 and 12 months of age were assigned to four groups (n=10). Group I consists of apparently healthy control rabbits, in group II, the rabbits with an induced hypertrophic scar received no treatment, except for base gel. In group III, the rabbits with induced hypertrophic scar were treated with triamcinolone acetonide (TAC) 0.1% as standard medication. In group IV, rabbits with induced hypertrophic scars were treated with Apremilast 5%. On the first day, four surgical incisions were made using an 8-mm biopsy punch on the ventral surface of the rabbit ear down to cartilage. The TAC and Apremilast were topically administered to the developed scars on day 31. The results included an examination of skin histopathology, the level of transforming growth factor beta-1 (TGF-β1), and collagen III in skin tissue. In the treatments, the inflammatory score, scar index, as well as immunological scores of TGFβ1 and collagen III, significantly decreased, compared to the hypertrophic induced scar group (P≤ 0.001). Moreover, there was a significant reduction in fibroblast count, compared to the group of induced hypertrophic scars (P<0.05). Apremilast was efficacious in the treatment of hypertrophic scars due to its ability to reduce inflammations and fibroblast counts and scar index. Nonetheless, the reduction of immunological scores was almost comparable to that of topical TAC.
Collapse
|
17
|
Vorstandlechner V, Laggner M, Copic D, Klas K, Direder M, Chen Y, Golabi B, Haslik W, Radtke C, Tschachler E, Hötzenecker K, Ankersmit HJ, Mildner M. The serine proteases dipeptidyl-peptidase 4 and urokinase are key molecules in human and mouse scar formation. Nat Commun 2021; 12:6242. [PMID: 34716325 PMCID: PMC8556235 DOI: 10.1038/s41467-021-26495-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/08/2021] [Indexed: 01/23/2023] Open
Abstract
Despite recent advances in understanding skin scarring, mechanisms triggering hypertrophic scar formation are still poorly understood. In the present study, we investigate mature human hypertrophic scars and developing scars in mice at single cell resolution. Compared to normal skin, we find significant differences in gene expression in most cell types present in scar tissue. Fibroblasts show the most prominent alterations in gene expression, displaying a distinct fibrotic signature. By comparing genes upregulated in murine fibroblasts during scar development with genes highly expressed in mature human hypertrophic scars, we identify a group of serine proteases, tentatively involved in scar formation. Two of them, dipeptidyl-peptidase 4 (DPP4) and urokinase (PLAU), are further analyzed in functional assays, revealing a role in TGFβ1-mediated myofibroblast differentiation and over-production of components of the extracellular matrix in vitro. Topical treatment with inhibitors of DPP4 and PLAU during scar formation in vivo shows anti-fibrotic activity and improvement of scar quality, most prominently after application of the PLAU inhibitor BC-11. In this study, we delineate the genetic landscape of hypertrophic scars and present insights into mechanisms involved in hypertrophic scar formation. Our data suggest the use of serine protease inhibitors for the treatment of skin fibrosis.
Collapse
Affiliation(s)
- Vera Vorstandlechner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Dragan Copic
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Katharina Klas
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Martin Direder
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria
| | - Yiyan Chen
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
- University of Applied Sciences, FH Campus Wien, Vienna, Austria
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Werner Haslik
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Christine Radtke
- Department of Plastic and Reconstructive Surgery, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Konrad Hötzenecker
- Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria
| | - Hendrik Jan Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Department of Thoracic Surgery, Medical University of Vienna, Vienna, Austria.
- Aposcience AG (FN 308089y), Dresdner Straße 87/A21, Vienna, Austria.
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
18
|
Davies P, Cuttle L, Young A. A Scoping Review of the Methodology Used in Studies of Genetic Influences on the Development of Keloid or Hypertrophic Scarring in Adults and Children After Acute Wounding. Adv Wound Care (New Rochelle) 2021; 10:557-570. [PMID: 33975469 PMCID: PMC8312015 DOI: 10.1089/wound.2020.1386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Significance: Keloid and hypertrophic scarring are common following acute wounds. However, the variability in scarring outcomes between individuals and in particular, the association between genetic factors and scarring, is not well understood. This scoping review aims to summarize the methodology used in studies of genetic influences on the development of keloid or hypertrophic scarring in adults and children after acute wounding. The objectives were to determine the study designs used, the characteristics of participants included, the tools used to assess scarring and the length of follow-up after wounding. Recent Advances: The review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Medline, Excerpta Medica Database (EMBASE), Web of Science, Biosciences Information Service (BIOSIS), Prospective Register of Systematic Reviews (PROSPERO), The Human Genetic Epidemiology (HuGE) Navigator (database of genetic association studies), and the genome-wide association study Catalog were searched from January 2008 to April 2020. Cohort studies and case–control studies that examined the association between one or more genetic variations and the development of keloid or hypertrophic scarring were eligible for inclusion. A narrative synthesis that grouped studies by wound type was conducted. Critical Issues: Nine studies met the inclusion criteria (five in burns, four surgical wounds, and none in other types of acute wounds). Seven assessed hypertrophic scarring, one keloid scarring, and one both scar types. Seven studies used a prospective cohort design. All studies used subjective methods (clinician or patient observation) to assess scarring. There was considerable variation in how scar scales were operationalized. Future Directions: This review identified a small body of evidence on genetic susceptibility to scarring after acute wounding. Further studies are needed, and in a wide range of populations, including patients with wounds caused by trauma.
Collapse
Affiliation(s)
- Philippa Davies
- Bristol Center for Surgical Research and Bristol Biomedical Research Center, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Leila Cuttle
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Australia
| | - Amber Young
- Bristol Center for Surgical Research and Bristol Biomedical Research Center, Bristol Medical School, University of Bristol, Bristol, United Kingdom
- Children's Burn Research Center, University Hospital Bristol and Weston NHS Foundation Trust, Bristol, United Kingdom
| |
Collapse
|
19
|
McArdle C, Abbah SA, Bhowmick S, Collin E, Pandit A. Localized temporal co-delivery of interleukin 10 and decorin genes using amediated by collagen-based biphasic scaffold modulates the expression of TGF-β1/β2 in a rabbit ear hypertrophic scarring model. Biomater Sci 2021; 9:3136-3149. [PMID: 33725045 DOI: 10.1039/d0bm01928c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Hypertrophic scarring (HS) is an intractable complication associated with cutaneous wound healing. Although transforming growth factor β1 (TGF-β1) has long been documented as a central regulatory cytokine in fibrogenesis and fibroplasia, there is currently no cure. Gene therapy is emerging as a powerful tool to attenuate the overexpression of TGF-β1 and its signaling activities. An effective approach may require transferring multiple genes to regulate different aspects of TGF-β1 signaling activities in a Spatio-temporal manner. Herein we report the additive anti-fibrotic effects of two plasmid DNAs encoding interleukin 10 (IL-10) and decorin (DCN) co-delivered via a biphasic 3D collagen scaffold reservoir platform. Combined gene therapy significantly attenuated inflammation and extracellular matrix components' accumulation in a rabbit ear ulcer model; and suppressed the expressions of genes associated with fibrogenesis, including collagen type I, as well as TGF-β1 and TGF-β2, while enhancing the genes commonly associated with regenerative healing including collagen type III. These findings may serve to provide a non-viral gene therapy platform that is safe, optimized, and effective to deliver multiple genes onto the diseased tissue in a wider range of tissue fibrosis-related maladies.
Collapse
Affiliation(s)
- Ciarstan McArdle
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sunny Akogwu Abbah
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Sirsendu Bhowmick
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Estelle Collin
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, National University of Ireland Galway, Ireland.
| |
Collapse
|
20
|
Chello C, Nenna A, Chello M, Satriano UM, Cardetta F, Lusini M, Nappi F, Dianzani C. Statin treatment and hypertrophic scarring after cardiac surgery. Wound Repair Regen 2020; 29:129-133. [PMID: 33236817 DOI: 10.1111/wrr.12878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/03/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022]
Abstract
Wound healing process after surgical procedure plays a crucial role to prevent blood loss and infections. Hypertrophic scars might occur after surgery and are generally associated with an inflammatory burden. Cardiac surgery is intrinsically related to a strong systemic inflammatory state that might favor hypertrophic scarring. Besides lipid-lowering effects, statins are known for their pleiotropic and anti-inflammatory activity. The aim of this study was to investigate the impact of statins in the healing process after median sternotomy in patients undergoing cardiac surgery. All patients undergoing major cardiac surgery with median sternotomy and cardiopulmonary bypass, and subsequently evaluated in the outpatient clinic after discharge, were included in this study. A total of 930 Caucasian patients were retrospectively reviewed. At outpatient visit, 276 patients (29.7%) showed the formation of hypertrophic scars. Patients with hypertrophic scars tended to be younger (P = .001) and nonstatin users (P = .001). Logistic regression analysis confirmed the protective role of statins (odds ratio 0.39, 95% confidence interval 0.29-0.53, P = .001), after adjustment for age. A dose-dependent effect was confirmed, showing a more intensive protective effect for higher doses of statins. Statin use might be correlated with reduced hypertrophic scars after cardiac surgery through median sternotomy. A dose-dependent effect has been shown, and statin effect seems to be independent of age in a selected population undergoing surgery with an elevated inflammatory burden. Although further studies are warranted to elucidate the biologic mechanisms, the concept of using statins as anti-scarring agents is novel and should be investigated with tailored studies.
Collapse
Affiliation(s)
- Camilla Chello
- Department of Dermatology, Università La Sapienza di Roma, Rome, Italy
| | - Antonio Nenna
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Massimo Chello
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | | | - Francesco Cardetta
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Mario Lusini
- Department of Cardiovascular Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Francesco Nappi
- Department of Cardiac Surgery, Centre Cardiologique du Nord de Saint Denis, Paris, France
| | - Caterina Dianzani
- Department of Reconstructive Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|