1
|
Rodrigues L, Giglioti R, Katiki LM, Sarria ALF, Scholze G, Veríssimo CJ. Assessment of synergistic and antagonistic interactions between volatile compounds thymol, carvacrol, and eugenol diluted in solvents against Rhipicephalus microplus in in vitro tests. Exp Parasitol 2024; 268:108877. [PMID: 39674534 DOI: 10.1016/j.exppara.2024.108877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The cattle tick Rhipicephalus microplus is prevalent in tropical and subtropical regions, causing substantial economic losses due to its resistance to conventional acaricides. There is an urgent need to identify safe and effective new acaricidal agents. Essential oils and their volatile compounds are promising alternatives. Ensuring the use of optimal solvents or surfactants that do not compromise the acaricidal activity of these compounds during testing is crucial. This study aims to evaluate how compounds thymol, carvacrol and eugenol interact with xylol, methanol, ethanol, acetone, isopropyl alcohol, glycerol, dimethyl sulfoxide, castor oil, propylene glycol, vaseline, and Tween 80® to enhance (or to worse) their acaricidal efficacy against R. microplus. Larval mortality time were compared against one negative control (soybean oil) and two positive controls (commercial pour-on products). The experiments were conducted in 48-well polyethylene plates, with around 100 larvae immersed in 200 μl of each solvent at 100, 50, 25, 12.5, 6.25, 3.125 and 1.56% and diluted in soybean oil or water, according to solubility. Each volatile compound (Thymol, carvacrol and eugenol) was diluted in the tested solvents to assess larval mortality time. Xylol demonstrated the shortest larval mortality time, even at a minimum concentration (p < 0.05). In contrast, liquid vaseline exhibited the longest larval mortality time. When thymol, carvacrol, and eugenol were combined with xylol, they achieved the shortest larval mortality time. Conversely, when diluted in liquid vaseline they exhibited synergistic effects decreasing the mortality time. Tween 80® worsen the efficacy of thymol, carvacrol, and eugenol, resulting in prolonged larval mortality times. These findings emphasize the critical role of solvent selection, indicating the choice of solvent profoundly affects the formulation's effectiveness, directly influencing the activity of the active compounds.
Collapse
Affiliation(s)
- Leandro Rodrigues
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil.
| | - Rodrigo Giglioti
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | - Luciana Morita Katiki
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| | | | - Germano Scholze
- GS®-Technology in Natural Products, P&D, Rodovia Alkindar Monteiro Junqueira, S/n, Km 34, Bairro Barreiro, CEP 12.918-150, Bragança Paulista, SP, Brazil
| | - Cecília José Veríssimo
- Centro de Pesquisa de Genética e Reprodução Animal - Instituto de Zootecnia, Rua Heitor Penteado, 56, CEP, 13380-011, Nova Odessa, SP, Brazil
| |
Collapse
|
2
|
Kosch Y, Mülling C, Emmerich IU. Resistance of Varroa destructor against Oxalic Acid Treatment-A Systematic Review. Vet Sci 2024; 11:393. [PMID: 39330772 PMCID: PMC11436189 DOI: 10.3390/vetsci11090393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/13/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
As Varroa destructor is one of the most important pathogens of Apis mellifera, there are numerous treatment methods, including pharmaceutical and biotechnological approaches. However, the rapid development of resistance to synthetic acaricides by Varroa destructor has become a significant concern. To date, there have been no investigations into the development of resistance to organic acids. This review examines the potential risk of oxalic acid resistance development by evaluating literature sources from the past 30 years following the PRISMA 2020 guidelines. Median annual efficacies are calculated and reviewed over time for several application methods. An efficacy higher than 70% is determined as not resistant. Independent of the method of application, no resistance development can be observed, although there are some outliers of the annual median. These outliers can be explained by brood status or study setting. However, the result is limited by the low number of efficacy values, and further standardised studies are needed.
Collapse
Affiliation(s)
- Yvonne Kosch
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Christoph Mülling
- Institute of Veterinary Anatomy, Histology and Embryology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 43, 04103 Leipzig, Germany
| | - Ilka U Emmerich
- Institute of Pharmacology, Pharmacy and Toxicology, Faculty of Veterinary Medicine, Leipzig University, An den Tierkliniken 15, 04103 Leipzig, Germany
| |
Collapse
|
3
|
Hazam S, Touati S, Touati L, Saher L, Khedidji H, Ait Kaki S, Chemat S. Promising Algerian essential oils as natural acaricides against the honey bee mite Varroa destructor (Acari: Varroidae). EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:87-107. [PMID: 38015279 DOI: 10.1007/s10493-023-00866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Varroosis induced by Varroa destructor Anderson and Trueman represents the most pathogenic and destructive disease affecting the western honey bee, Apis mellifera. In this study, we investigated the acaricidal activity against the Varroa mite using essential oils (EOs) from the aerial parts of four autochthonous Algerian herbal species, namely Artemisia herba alba, Artemisia campestris, Artemisia judaica and Ruta montana. EOs were obtained by means of hydrodistillation and their composition was characterized by gas chromatography-mass spectrometry. The toxicity of the selected EOs toward V. destructor and A. mellifera adult honey bees was evaluated using the complete exposure method. The results indicate the predominance of davanone (66.9%) in A. herba alba, β-pinene (19.5%) in A. campestris, piperitone (68.7%) in A. judaica and 2-undecanone (70.1%) in R. montana EOs. Interestingly, the LC50 values coupled to bee mortality rates revealed that all tested oils exhibited significant acaricidal efficiency with selectivity ratio (SR) values of 10.77, 8.78, 5.62 and 3.73 for A. campestris, A. judaica, A. herba alba, and R. montana, respectively. These values were better than that of thymol (SR = 3.65), the positive control. These findings suggest that these EOs could be used as plant-derived veterinary acaricides to control varroosis in field conditions.
Collapse
Affiliation(s)
- Souad Hazam
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria.
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria.
| | - Salem Touati
- Multipurpose Agricultural Cooperative of Tizi-Ouzou (CAPTO), Tizi-Ouzou, Algeria
| | - Lounis Touati
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Liza Saher
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| | - Hassiba Khedidji
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Sabrina Ait Kaki
- Laboratory of Valorization and Conservation of Biological Resources (VALCOR), Faculty of Sciences, University of M'hamed Bougara, Boumerdes, Algeria
| | - Smain Chemat
- Centre de Recherche Scientifique et Technique en Analyses Physico-Chimiques (CRAPC), Zone Industrielle de Bousmail, PB 384, Tipaza, 42004, Algeria
| |
Collapse
|
4
|
Vercelli M, Croce L, Mancuso T. Biotechnical Control of Varroa in Honey Bee Colonies: A Trade-Off between Sustainable Beekeeping and Profitability? INSECTS 2023; 14:830. [PMID: 37887842 PMCID: PMC10607048 DOI: 10.3390/insects14100830] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
Beekeeping faces several challenges, such as the Varroa mite. Few studies have measured the economic performance of farms in relation to the practices used for Varroa control. Our study analyzed various biotechniques (total brood removal, TBR; queen caging, QC; royal cell insertion, CI) and other methods (chemical treatments, CT; thymol use, THY) adopted by Italian beekeepers to show whether the adoption of biotechniques leads to farm profitability or a necessary trade-off between sustainability and profitability. Beekeepers were interviewed about the methods and operations conducted on their farms. The net incomes (NIs) of the farms were calculated and inter- and intrafarm comparisons were performed. A detailed schema of each practice was designed. The net income derived from TBR was the highest in eight out of the nine case studies, followed by CI and then QC. The NI calculated for farms using CT was lower than that for farms using other methods in two of the case studies. We also analyzed different biotechniques applied by the same farm and found that the NI resulting from TBR was higher than that achieved from the use of QC and CI. Our study suggests that use of biotechniques represents a long-term sustainable solution for reducing the level of Varroa infestation, which affects farm net income.
Collapse
Affiliation(s)
| | - Luca Croce
- Independent Researcher, Borgata Baratta 27, 10040 Villardora, Turin, Italy
| | - Teresina Mancuso
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Largo P. Braccini 2, 10095 Grugliasco, Turin, Italy;
| |
Collapse
|
5
|
Efficacy and Toxicity of VarroMed® Used for Controlling Varroa destructor Infestation in Different Seasons and Geographical Areas. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11188564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
VarroMed® is a soft acaricide registered for honey bees on the European Union market since 2017 for Varroa control. Researchers involved were partners of different countries of the Varroa control task force of the COLOSS Association. Our goal was to evaluate performances (acaricide efficacy and toxic effects on honey bees) of VarroMed® in different climatic conditions. Our results in the tested apiaries showed an efficacy ranging from 71.2 to 89.3% in summer/autumn, and from 71.8 to 95.6% in winter. No toxic effects on bees were observed, except in one apiary, where severe cold climatic conditions played a crucial role. The treatment could be efficiently applied in broodright as well as in broodless colonies. Integrated pest management (IPM) recommendations for beekeepers are provided in order to apply the best Varroa control protocol.
Collapse
|