1
|
Busuulwa A, Revynthi AM, Liburd OE, Lahiri S. Banker Plant Efficacy to Boost Natural Predators for Management of Field Populations of Scirtothrips dorsalis Hood (Thysanoptera Thripidae) in Strawberries. INSECTS 2024; 15:776. [PMID: 39452354 PMCID: PMC11508206 DOI: 10.3390/insects15100776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Since 2015, Scirtothrips dorsalis Hood has emerged as the main pest of strawberries in Florida. Given the limited management options, there is a recognized need to expand on the management strategies for this pest. Therefore, we explored the possibility of using banker plants to recruit naturally occurring predators of thrips into strawberry fields to suppress S. dorsalis. The study began in the 2021-2022 strawberry season where five banker plants were screened to determine which ones could consistently attract thrips predators by flowering throughout the strawberry season. Capsicum annum L. (ornamental pepper) and Lobularia maritima L. (sweet alyssum) were selected for further evaluation. In the 2022-2023 strawberry season, using a randomized complete block design we assessed the capability of these banker plants to attract thrips predators into the strawberry field. In addition, we examined how the banker plant distance from the strawberry plants influenced the S. dorsalis pest suppression. Our results showed that strawberries located within 3.7 m of ornamental pepper plants had less leaf damage from S. dorsalis compared with those farther away, which may result from the repellent effect of the ornamental peppers. Additionally, Geocoris spp. and Orius spp. were identified as the main thrips predators in the system, although in relatively low numbers. Therefore, these results highlight the potential of incorporating ornamental pepper as a banker plant in strawberry production. Additional applications of this research are explored below.
Collapse
Affiliation(s)
- Allan Busuulwa
- Gulf Coast Research and Education Center, Entomology and Nematology Department, University of Florida, Wimauma, FL 33598, USA
| | - Alexandra M. Revynthi
- Tropical Research and Education Center, Entomology and Nematology Department, University of Florida, Homestead, FL 33031, USA
| | - Oscar E. Liburd
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32608, USA
| | - Sriyanka Lahiri
- Gulf Coast Research and Education Center, Entomology and Nematology Department, University of Florida, Wimauma, FL 33598, USA
| |
Collapse
|
2
|
Li Y, Zhang B, Zhang J, Yang N, Yang D, Zou K, Xi Y, Chen G, Zhang X. The inappropriate application of imidacloprid destroys the ability of predatory natural enemies to control pests in the food chain: A case study of the feeding behavior of Orius similis on Frankliniella occidentalis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116040. [PMID: 38306817 DOI: 10.1016/j.ecoenv.2024.116040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/02/2024] [Accepted: 01/27/2024] [Indexed: 02/04/2024]
Abstract
Insecticides are an indispensable and important tool for agricultural production. However, the inappropriate application of insecticides can cause damage to the food chain and ecosystem. Orius similis is an important predatory and natural enemy of Frankliniella occidentalis. Imidacloprid is widely used to control pests, but will inevitably exert adverse effects on O. similis. In order to determine the effect of different imidacloprid treatments on the ability of O. similis to prey on the 2nd-instar nymphs of F. occidentalis, we determined the toxicity and predation of imidacloprid on different stages of O. similis under contact and ingestion treatments. In addition, we used the Holling disc equation to evaluate the ability of O. similis to search and exhibit predatory activity following contact and ingestion treatments. Analysis showed that the highest LC10 and LC20 values for imidacloprid contact and ingestion toxicity treatment were 17.06 mg/L and 23.74 mg/L, respectively. Both imidacloprid treatments led toa reduction in the predatory of O. similis on prey. The functional responses of the 3rd to 5th instar nymphs, along with female and male O. similis adults to the 2nd-instar nymphs of F. occidentalis were consistent with the Holling type II response following contact and ingestion with imidacloprid. However, following imidacloprid treatment, the handing time (Th) of O. similis with single F. occidentalis was prolonged and the instantaneous attack rate (a) was reduced after imidacloprid treatment. The predatory capacity (a/Th) of female O. similis adults when treated with the LC10 concentration of imidacloprid by ingestion was 52.85; this was lower than that of the LC10 concentration of imidacloprid in the contact treatment (57.67). The extent of predation of O. similis on the 2nd-instar nymphs of F. occidentalis was positively correlated with prey density, although the search effect was negatively correlated with prey density. The most extensive search effect was exhibited by adult O. similis females. Simulations with the Hessell-Varley interference model showed that an increase in the number of O. similis would reduce search efficiency regardless of whether they were treated with imidacloprid or not. Thus, O. similis, especially female adults, exhibited strong potential for controlling the 2nd-instar nymphs of F. occidentalis. The toxicity of ingestion following treatment with the same concentration of imidacloprid in O. similis was greater than that of contact treatment. When using O. similis to control F. occidentalis in the field, we should increase the number of female adults released, and prolong the interval between imidacloprid treatment and O. similis exposure. This strategy will improve the control ability of O. similis, coordinate both chemical and biological control, reduce the impact of pesticides on the environment, and improve the efficiency of agricultural production.
Collapse
Affiliation(s)
- Yiru Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Bo Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Jinlong Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Nian Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Dan Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Kun Zou
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Yangyan Xi
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Guohua Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, College of Plant Protection, Yunnan Agricultural University, 650201 Kunming, China.
| |
Collapse
|
3
|
Saito T, Buitenhuis R. Integration of the Generalist Predator Nabis americoferus (Hemiptera: Nabidae) in a Greenhouse Strawberry Biocontrol Program with Phytoseiid Predatory Mites and the Entomopathogenic Fungus Beauveria bassiana. INSECTS 2024; 15:52. [PMID: 38249058 PMCID: PMC10817059 DOI: 10.3390/insects15010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/23/2024]
Abstract
In strawberry production, western flower thrips (WFT) and two-spotted spider mites (TSSM) inflict feeding damage and reduce the yield. Biological control for these pests often includes phytoseiid predatory mites and entomopathogenic fungi. The hemipteran family Nabidae have been reported as prominent predators in open-field strawberry. Nabis americoferus Carayon is a new biocontrol agent developed in Canada. This study examined if this species was a good candidate for integration with biological control for greenhouse strawberry production. The laboratory trials showed that Phytoseiulus persimilis Athias-Henriot and Amblyseius swirskii Athias-Henriot were compatible with N. americoferus, especially when alternative food was available. In contrast, the nabid was not compatible with the Beauveria bassiana (Balsamo) GHA strain. A greenhouse cage study was conducted to determine if it was beneficial to add N. americoferus to the phytoseiid-mites-based biological control program for WFT and TSSM in greenhouse strawberry. The release of N. americoferus on a banker plant together with the placement of sachets of Neoseiulus cucumeris (Oudemans) and Neoseiulus californicus (McGregor) was beneficial, not only potentially reducing the number of sachet applications, but also providing better pest control than phytoseiid mites alone. Neither the phytoseiids nor the N. americoferus numbers were significantly affected by the presence of each other.
Collapse
Affiliation(s)
- Taro Saito
- Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Vineland Station, ON L0R 2E0, Canada;
| | | |
Collapse
|
4
|
Lahiri S, Smith HA, Gireesh M, Kaur G, Montemayor JD. Arthropod Pest Management in Strawberry. INSECTS 2022; 13:insects13050475. [PMID: 35621809 PMCID: PMC9147324 DOI: 10.3390/insects13050475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/11/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022]
Abstract
Simple Summary Strawberry is a commercially important crop which is produced and consumed globally. As there is an increase in economic significance of strawberry production, growers across the globe face challenges in protecting the crop against insect and mite pests. The damage from insect pests results in significant yield loss which adversely affects the strawberry industry. To overcome this situation, management of pests is warranted with reduced impact on the environment and beneficial organisms. Even though insecticide-driven management practices predominate in the strawberry production system, the use of non-chemical alternatives is also gaining importance. The current review is aimed at discussing the important pests of strawberry and various integrated pest management practices adopted worldwide to reduce the damage impact and improve production. Abstract The strawberry crop endures economic losses due to feeding injury from a number of phytophagous arthropod pests. A number of invasive pests have posed challenges to crop protection techniques in the strawberry cropping system recently. It is increasingly evident that sole reliance on chemical control options is not sustainable. In this review, current challenges and advances in integrated pest management of various strawberry pests are presented. Key pests discussed include thrips, mites, lygus bug, spotted wing drosophila, seed bug, weevils, aphids, whiteflies, and armyworms. Several integrated pest management techniques that include use of intercropping, resistant cultivars, irradiation with gamma rays, use of spectral sensitivity of pests, biological control agents and natural enemies, and biorational pesticides have recently been reported to be useful in managing the various strawberry pests. With the increase in world production of strawberry, several techniques will be necessary to manage the pest complex of strawberry.
Collapse
|
5
|
Mouden S, Bac-Molenaar JA, Kappers IF, Beerling EAM, Leiss KA. Elicitor Application in Strawberry Results in Long-Term Increase of Plant Resilience Without Yield Loss. FRONTIERS IN PLANT SCIENCE 2021; 12:695908. [PMID: 34276745 PMCID: PMC8282209 DOI: 10.3389/fpls.2021.695908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/07/2021] [Indexed: 05/13/2023]
Abstract
For a first step integrating elicitor applications into the current IPM strategy increasing plant resilience against pests, we investigated repeated elicitor treatments in a strawberry everbearer nursery and cropping cycle under glass. During nursery methyl-jasmonate (MeJA), testing induction of defenses with plant bioassays was applied every 3 weeks. Thrips damage and reproduction by spider mites, whitefly and aphids were strongly reduced upon elicitor treatment. Subsequently, we applied MeJA every 3 weeks or based on scouting pests during a whole cropping cycle. Thrips leaf bioassays and LC-MS leaf metabolomics were applied to investigate the induction of defenses. Leaf damage by thrips was lower for both MeJA application schemes compared to the control except for the last weeks. While elicitor treatments after scouting also reduced damage, its effect did not last. Thrips damage decreased from vegetative to mature plants during the cropping cycle. At the end of the nursery phase, plants in the elicitor treatment were smaller. Surprisingly, growth during production was not affected by MeJA application, as were fruit yield and quality. LC-MS leaf metabolomics showed strong induction of vegetative plants decreasing during the maturation of plants toward the end of cultivation. Concurrently, no increase in the JA-inducible marker PPO was observed when measured toward the end of cultivation. Mostly flavonoid and phenolic glycosides known as plant defense compounds were induced upon MeJA application. While induced defense decreased with the maturation of plants, constitutive defense increased as measured in the leaf metabolome of control plants. Our data propose that young, relatively small plant stages lack constitutive defense necessitating an active JA defense response. As plants, mature constitutive defense metabolites seem to accumulate, providing a higher level of basal resistance. Our results have important implications for but are not limited to strawberry cultivation. We demonstrated that repeated elicitor application could be deployed as part of an integrated approach for sustainable crop protection by vertical integration with other management tactics and horizontal integration to control multiple pests concurrently. This approach forms a promising potential for long-term crop protection in greenhouses.
Collapse
Affiliation(s)
- Sanae Mouden
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Johanna A. Bac-Molenaar
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
- *Correspondence: Johanna A. Bac-Molenaar
| | - Iris F. Kappers
- Laboratory of Plant Physiology, Plant Science Group, Wageningen University, Wageningen, Netherlands
| | - Ellen A. M. Beerling
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| | - Kirsten A. Leiss
- Plant Health Team, Business Unit Greenhouse Horticulture, Plant Science Group, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|