1
|
Chen Q, Zhang J, Tian Y, Li J, Ning W, Chen G, Zhang X. Evaluating the effects of short-term low temperature on the growth and development of Trichopria drosophilae based on the age-stage two-sex life table. Parasit Vectors 2024; 17:418. [PMID: 39369224 PMCID: PMC11456240 DOI: 10.1186/s13071-024-06480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/03/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND The effects of low temperatures on parasitic wasps are crucial for maintaining farmland biodiversity and enhancing biological control, especially given the implications of global warming and frequent extreme cold events. METHODS We studied the effects of different low temperatures (-8 ± 1 °C, -4 ± 1 °C, 0 ± 1 °C, 4 ± 1 °C, and 8 ± 1 °C) on the mating frequency and duration of male adults of Trichopria drosophilae and the number of pupae beaten by female adults, and constructed the age-stage two-sex life table of T. drosophilae. RESULTS This study found that male T. drosophilae adults exposed to low temperatures for 12 h significantly altered their mating behavior, peaking between 15:00 and 17:00. As the temperature dropped during the exposure, both the mating frequency of T. drosophilae and the duration of pupal beating were affected. The survival rate of female adults dropped from 39.55% at 8 °C to just 21.17% at -8 °C. Low-temperature treatment shortened the development period and lifespan for T. drosophilae adults. They developed 4.71 days faster and had a total lifespan that was 10.66 days shorter than those in the control group after being exposed to -8 °C. Furthermore, the average number of eggs laid by females at -8 °C was 4.46 less than that at 8 °C and 6.16 less than that in the control group, which laid an average of 21.55 eggs. The net reproductive rate (R0) of T. drosophilae decreased with lower temperatures, reaching a low of 23.64 at -8 °C. Conversely, the intrinsic growth rate (rm) actually increased as temperatures dropped, with the lowest value being 0.21 at -8 °C. CONCLUSIONS The findings indicate that short-term exposure to low temperatures hampers the growth and population increase of T. drosophilae, thereby reducing their effectiveness as biological control agents.
Collapse
Affiliation(s)
- Qiang Chen
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
- Tea Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jinlong Zhang
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
| | - Ye Tian
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
| | - Juan Li
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
| | - Weizhi Ning
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
| | - Guohua Chen
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoming Zhang
- College of Plant Protection, State Key Laboratory of Yunnan Biological Resources Protection and Utilization, Yunnan Agricultural University, Kunming, 650201, China.
| |
Collapse
|
2
|
Auguste A, Ris N, Belgaidi Z, Kremmer L, Mouton L, Fauvergue X. Insect population dynamics under Wolbachia-induced cytoplasmic incompatibility: Puzzle more than buzz in Drosophila suzukii. PLoS One 2024; 19:e0300248. [PMID: 38470882 DOI: 10.1371/journal.pone.0300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
In theory, the introduction of individuals infected with an incompatible strain of Wolbachia pipientis into a recipient host population should result in the symbiont invasion and reproductive failures caused by cytoplasmic incompatibility (CI). Modelling studies combining Wolbachia invasion and host population dynamics show that these two processes could interact to cause a transient population decline and, in some conditions, extinction. However, these effects could be sensitive to density dependence, with the Allee effect increasing the probability of extinction, and competition reducing the demographic impact of CI. We tested these predictions with laboratory experiments in the fruit fly Drosophila suzukii and the transinfected Wolbachia strain wTei. Surprisingly, the introduction of wTei into D. suzukii populations at carrying capacity did not result in the expected wTei invasion and transient population decline. In parallel, we found no Allee effect but strong negative density dependence. From these results, we propose that competition interacts in an antagonistic way with Wolbachia-induced cytoplasmic incompatibility on insect population dynamics. If future models and data support this hypothesis, pest management strategies using Wolbachia-induced CI should target populations with negligible competition but a potential Allee effect, for instance at the beginning of the reproductive season.
Collapse
Affiliation(s)
| | - Nicolas Ris
- ISA, INRAE, Université Côte d'Azur, Sophia Antipolis, France
| | - Zainab Belgaidi
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laurent Kremmer
- ISA, INRAE, Université Côte d'Azur, Sophia Antipolis, France
| | - Laurence Mouton
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon, Université Claude Bernard Lyon 1, Villeurbanne, France
| | | |
Collapse
|
3
|
Chen Q, Zhang J, Tian Y, Chen G, Zhang X. Effect of Short-Term High-Temperature Stimuli on the Functional Response of Trichopria drosophilae (Matsumura). INSECTS 2023; 14:748. [PMID: 37754716 PMCID: PMC10531878 DOI: 10.3390/insects14090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Researchers have previously investigated the role of Trichopria drosophilae as a pupal parasitoid in the biological control of Drosophila suzukii in China. Here, we investigated the ability of T. drosophilae to parasitize D. suzukii pupae at different temperatures. To do this, we evaluated the functional response of T. drosophilae to D. suzukii pupae at different temperatures and investigated the specific effects of density on parasitism. The results show that the parasitic functional response of T. drosophilae under different high-temperature stimuli is Holling type II. After processing at 29 °C, the instantaneous search rate was 1.1611; the theoretical maximum parasitic value was 20.88 at 31 °C. The parasitic efficiency decreased with increasing stimulation temperature, as the host pupa density increased from 5 to 25, and the strongest search effect occurred at 0.87 at 27 °C. The searching effect of T. drosophilae at each temperature fell gradually with an increase in prey density from 5 to 25. At 31 °C, the theoretical parasitic maximum of T. drosophilae reached a maximum of 20.88 pupae. At this temperature, when a pair of T. drosophilae was placed in a pupa density of 50, its actual total number of parasites was 18.60.
Collapse
Affiliation(s)
| | | | | | - Guohua Chen
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Q.C.); (J.Z.); (Y.T.)
| | - Xiaoming Zhang
- State Key Laboratory of Yunnan Biological Resources Protection and Utilization, College of Plant Protection, Yunnan Agricultural University, Kunming 650201, China; (Q.C.); (J.Z.); (Y.T.)
| |
Collapse
|
4
|
Reyes-Ramírez A, Belgaidi Z, Gibert P, Pommier T, Siberchicot A, Mouton L, Desouhant E. Larval density in the invasive Drosophila suzukii: Immediate and delayed effects on life-history traits. Ecol Evol 2023; 13:e10433. [PMID: 37636864 PMCID: PMC10450837 DOI: 10.1002/ece3.10433] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
The effects of density are key in determining population dynamics, since they can positively or negatively affect the fitness of individuals. These effects have great relevance for polyphagous insects for which immature stages develop within a single site of finite feeding resources. Drosophila suzukii is a crop pest that induces severe economic losses for agricultural production; however, little is known about the effects of density on its life-history traits. In the present study, we (i) investigated the egg distribution resulting from females' egg-laying strategy and (ii) tested the immediate (on immatures) and delayed (on adults) effects of larval density on emergence rate, development time, potential fecundity, and adult size. The density used varied in a range between 1 and 50 larvae. We showed that 44.27% of the blueberries used for the oviposition assay contained between 1 and 11 eggs in aggregates. The high experimental density (50 larvae) has no immediate effect in the emergence rate but has effect on larval developmental time. This trait was involved in a trade-off with adult life-history traits: The time of larval development was reduced as larval density increased, but smaller and less fertile females were produced. Our results clearly highlight the consequences of larval crowding on the juveniles and adults of this fly.
Collapse
Affiliation(s)
- Alicia Reyes-Ramírez
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Zaïnab Belgaidi
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Patricia Gibert
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Thomas Pommier
- UMR 1418, Laboratoire d'Ecologie Microbienne, INRAE, CNRS, VetAgro Sup Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Aurélie Siberchicot
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Laurence Mouton
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| | - Emmanuel Desouhant
- UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, CNRS, VetAgro Sup, Université de Lyon Université Claude Bernard Lyon 1 Villeurbanne Cedex France
| |
Collapse
|
5
|
Parepely SK, Kempraj V, Sanganahalli Dharanesh D, Krishnarao G, Pagadala Damodaram KJ. The greater wax moth, Galleria mellonella (L.) uses two different sensory modalities to evaluate the suitability of potential oviposition sites. Sci Rep 2023; 13:211. [PMID: 36604438 PMCID: PMC9814581 DOI: 10.1038/s41598-022-26826-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023] Open
Abstract
An ovipositing insect evaluates the benefits and risks associated with the selection of an oviposition site for optimizing the fitness and survival of its offspring. The greater wax moth, Galleria mellonella (L.), uses beehives as an oviposition site. During egg-laying, the gravid wax moth confronts two kinds of risks, namely, bees and conspecific larvae. While bees are known to attack the moth's offspring and remove them from the hive, the conspecific larvae compete for resources with the new offspring. To date, little is known about the mechanisms involved in the assessment of oviposition site by the greater wax moth, G. mellonella (L.). Here, we demonstrate that the wax moth uses two different sensory modalities to detect risks to its offspring in the hives of Apis cerena. Bees appear to be detected by the contact-chemoreception system of the gravid wax moth, while detection of conspecifics relies on the olfactory system. Hence, our findings suggest that two different sensory modalities are used to detect two different risks to the offspring and that the selection of oviposition sites by G. mellonella (L.) relies on the integration of inputs from both the olfactory and contact-chemoreception systems.
Collapse
Affiliation(s)
- Saravan Kumar Parepely
- Crop Protection Division, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
- Department of Biochemistry, Jain University, Bengaluru, India
| | - Vivek Kempraj
- USDA-ARS, Daniel K. Inouye Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | | | - Gandham Krishnarao
- Crop Protection Division, ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | | |
Collapse
|