1
|
Fu J, Qin M, Liang Y, Lu Y, An Y, Luo Y. Toxicity and Behavioral Effects of Amending Soils with Biochar on Red Imported Fire Ants, Solenopsis invicta. INSECTS 2024; 15:42. [PMID: 38249048 PMCID: PMC10816398 DOI: 10.3390/insects15010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/22/2023] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Solenopsis invicta, often known as the red imported fire ants (RIFAs), is a well-known global invasive ant species that can be found in agricultural, urban, and natural environments worldwide. Simultaneously, it also inhabits the soil. Biochar is generated by the pyrolysis of organic matter under high-temperature anoxic environments and widely used in agricultural ecosystems and soil amendment. However, to date, it remains unknown as to whether soil application of biochar has a negative effect on RIFAs. In our study, we investigated the toxicity and irritability effects of different amounts of biochar (0%, 1%, 2%, 5%, 10%, and 20%) introduced into the soil on red fire ants; upon comparison with the control soil (0% biochar), the application of 1%, 2%, and 5% biochar did not result in significantly different results. But the utilization of biochar at a concentration over 10% effectively repelled the RIFAs, resulting in their departure from the treated soils. High doses of biochar were able to cause death of red fire ants; the mortality rate of red fire ants reached 55.56% after 11 days of 20% biochar treatment. We also evaluated the effects of biochar on four behaviors of red fire ants, namely aggregation, walking, grasping, and attacking; 20% of the biochar treatment group reduced aggregation by 64.22% and this value was 55.22%, 68.44%, and 62.36% for walking, grasping, and attacking. Finally, we measured the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) enzyme activity and malondialdehyde (MDA) content in red fire ants; the results showed that the activities of the three enzymes increased with the increase in biochar addition, which indicated that a high dose of biochar induced oxidative stress in red fire ants. Our results indicate that biochar has the potential to cause toxicity and repel red imported fire ants (RIFAs) in a manner that is dependent on the concentration. We propose that biochar could be utilized in the control and manufacturing of baits for red fire ant management. This work establishes a foundation for the prevention and management of red fire ants and the logical utilization of biochar.
Collapse
Affiliation(s)
- Jiantao Fu
- School of Plant Protection, Hainan University, Haikou 570228, China; (J.F.)
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Mingda Qin
- School of Plant Protection, Hainan University, Haikou 570228, China; (J.F.)
| | - Yue Liang
- College of Plant Protection, South China Agricultural University, Guangzhou 510316, China
| | - Yinglin Lu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yuxing An
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou 510316, China
| | - Yanping Luo
- School of Plant Protection, Hainan University, Haikou 570228, China; (J.F.)
| |
Collapse
|
2
|
Ren Q, Ma L, Zhang X, Chen L, Mao Z, Li D, Zhang L, Jiang X. Effect of Juvenile Hormone on Worker Behavioral Transition in the Red Imported Fire Ant, Solenopsis invicta (Hymenoptera: Formicidae). INSECTS 2023; 14:934. [PMID: 38132607 PMCID: PMC10743645 DOI: 10.3390/insects14120934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023]
Abstract
The division of labor among workers is a defining characteristic of social insects and plays a pivotal role in enhancing the competitive advantage of their colony. Juvenile hormone (JH) has long been hypothesized to be the essential driver in regulating the division of labor due to its ability to accelerate behavioral transitions in social insects, such as honeybees. The regulation of behavioral transitions by JH in the red imported fire ant (RIFA), Solenopsis invicta, a typical social pest, is unclear. Through video capture and analysis, we investigated the effects of the juvenile hormone analogue (JHA) methoprene on brood care, phototaxis behavior, and threat responsiveness of RIFA nurse workers. Our results showed that the JHA application significantly reduced the time and frequency of brood care behavior by nurse workers while increasing their walking distance and activity time in the light area. Additionally, the application of JHA made ants become excited, indicating a significant improvement in their activity level (movement distance, time, and speed). Furthermore, it was observed that the application of JHA did not affect the threat responsiveness of nurse workers towards stimuli (nestmates or non-nestmates). Our study demonstrates that the application of JHA reduced brood care behavior and enhanced phototaxis in nurse workers, which may reveal the role of JH in facilitating behavioral transitions in RIFA from intranidal tasks to extranidal activity. This study provides an experimental basis for further elucidating the mechanism underlying the division of labor in social insects.
Collapse
Affiliation(s)
- Qilin Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Lin Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xiaolong Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Libiao Chen
- Guangxi Green City Pest Control Technology Co., Ltd., Nanning 530007, China;
| | - Zhigang Mao
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Dongdong Li
- Guangxi Beitou Urban Environmental Governance Group Co., Ltd., Nanning 530000, China; (Z.M.); (D.L.)
| | - Lei Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| | - Xingfu Jiang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.R.); (L.M.); (X.Z.)
| |
Collapse
|
3
|
Du C, Lyu H, Wang L, Mao L, Li L, Yang X, Wang C. Foraging Behaviors of Red Imported Fire Ants (Hymenoptera Formicidae) in Response to Bait Containing Different Concentrations of Fipronil, Abamectin, or Indoxacarb. INSECTS 2023; 14:852. [PMID: 37999051 PMCID: PMC10671866 DOI: 10.3390/insects14110852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/25/2023]
Abstract
The red imported fire ant, Solenopsis invicta Buren, is a severe pest with agricultural, ecological, and medical significance. The baiting treatment is one of the main methods to control S. invicta. However, few studies have evaluated the acceptance of fire ant bait. Here, field and laboratory studies were conducted to investigate the foraging behaviors of S. invicta responding to fire ant baits containing different concentrations of active ingredients (fipronil, abamectin, or indoxacarb). Field studies showed that S. invicta transported significantly less 0.0125% fipronil bait than control bait (without toxicant) and 0.0001% fipronil bait. The number of foraging ants significantly decreased with an increase in fipronil concentration. Our previous study showed that S. invicta usually buries the food treated with repellent chemicals, and interestingly, significantly more soil particles were transported into tubes containing 0.0001% fipronil bait than tubes containing control bait or 0.0125% fipronil bait. In addition, S. invicta transported significantly less 0.0005% abamectin bait than control bait, and significantly fewer ants were found in tubes containing 0.0125% abamectin bait than control bait. However, there was no significant difference in bait transport, number of foraging ants, and weight of soil particles relocated in tubes containing different concentrations of indoxacarb bait. In addition, laboratory studies showed that S. invicta transported significantly less 0.0125% fipronil bait than control bait and bait containing abamectin (0.0025% or 0.0125%) or indoxacarb (0.0125% or 0.0625%). In addition, the transport speed for the 0.0125% fipronil bait was the slowest. These results show that specific concentrations of some active ingredients may negatively affect bait acceptance for S. invicta, and should be avoided in fire ant bait production.
Collapse
Affiliation(s)
- Chengju Du
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.D.)
| | - Hailong Lyu
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.D.)
| | - Lanfeng Wang
- Guangzhou Guangjian Construction Engineering Testing Center Co., Ltd., Guangzhou 510699, China
| | - Lei Mao
- Guangzhou Guangjian Construction Engineering Testing Center Co., Ltd., Guangzhou 510699, China
| | - Lin Li
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.D.)
| | - Xinya Yang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.D.)
| | - Cai Wang
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou 510642, China; (C.D.)
| |
Collapse
|
4
|
Du M, Yin Z, Xu K, Huang Y, Xu Y, Wen W, Zhang Z, Xu H, Wu X. Integrated mass spectrometry imaging and metabolomics reveals sublethal effects of indoxacarb on the red fire ant Solenopsis invicta. PEST MANAGEMENT SCIENCE 2023; 79:3122-3132. [PMID: 37013793 DOI: 10.1002/ps.7489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/26/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Indoxacarb, representing an efficient insecticide, is normally made into a bait to spread the poison among red fire ants so that it can be widely applied in the prevention and control of Solenopsis invicta. However, the potential toxicity mechanism of S. invicta in response to indoxacarb remains to be explored. In this study, we integrated mass spectrometry imaging (MSI) and untargeted metabolomics methods to reveal disturbed metabolic expression levels and spatial distribution within the whole-body tissue of S. invicta treated with indoxacarb. RESULTS Metabolomics results showed a significantly altered level of metabolites after indoxacarb treatment, such as carbohydrates, amino acids and pyrimidine and derivatives. Additionally, the spatial distribution and regulation of several crucial metabolites resulting from the metabolic pathway and lipids can be visualized using label-free MSI methods. Specifically, xylitol, aspartate, and uracil were distributed throughout the whole body of S. invicta, while sucrose-6'-phosphate and glycerol were mainly distributed in the abdomen of S. invicta, and thymine was distributed in the head and chest of S. invicta. Taken together, the integrated MSI and metabolomics results indicated that the toxicity mechanism of indoxacarb in S. invicta is closely associated with the disturbance in several key metabolic pathways, such as pyrimidine metabolism, aspartate metabolism, pentose and glucuronate interconversions, and inhibited energy synthesis. CONCLUSION Collectively, these findings provide a new perspective for the understanding of toxicity assessment between targeted organisms S. invicta and pesticides. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingyi Du
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
- Key Laboratory of Bio-Pesticide Creation and Application of Guangdong Province, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Zhibin Yin
- Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kaijie Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yudi Huang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Yizhu Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Wenlin Wen
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Zhixiang Zhang
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Hanhong Xu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xinzhou Wu
- National Key Laboratory of Green Pesticide and Key Laboratory of Natural Pesticide and Chemical Biology of the Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|