1
|
Li XL, Li DD, Cai XY, Cheng DF, Lu YY. Reproductive behavior of fruit flies: courtship, mating, and oviposition. PEST MANAGEMENT SCIENCE 2024; 80:935-952. [PMID: 37794312 DOI: 10.1002/ps.7816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/09/2023] [Accepted: 10/01/2023] [Indexed: 10/06/2023]
Abstract
Many species of the Tephritidae family are invasive and cause huge damage to agriculture and horticulture, owing to their reproductive characteristics. In this review, we have summarized the existing studies on the reproductive behavior of Tephritidae, particularly those regarding the genes and external factors that are associated with courtship, mating, and oviposition. Furthermore, we outline the issues that still need to be addressed in fruit fly reproduction research. The review highlights the implications for understanding the reproductive behavior of fruit flies and discusses methods for their integrated management and biological control. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xin-Lian Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dou-Dou Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Xin-Yan Cai
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Dai-Feng Cheng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Guangzhou, China
| |
Collapse
|
2
|
Haytham H, Kamel C, Wafa D, Salma F, Naima BM, George T, Ameur C, Msaad Guerfali M. Probiotic consortium modulating the gut microbiota composition and function of sterile Mediterranean fruit flies. Sci Rep 2024; 14:1058. [PMID: 38212383 PMCID: PMC10784543 DOI: 10.1038/s41598-023-50679-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024] Open
Abstract
The sterile insect technique (SIT) remains a successful approach in managing pest insects. However, the long-term mass rearing and sterilizing radiation associated with SIT have been observed to induce physiological and ecological fitness decline in target insects. This decline may be attributed to various factors, including commensal microbiota dysbiosis, selection procedures, loss of heterozygosity, and other complex interactions.. There is evidence that the bacterial symbiont of insects may play critical roles in digestion, development, reproduction, and behavior. Probiotics are an increasingly common approach for restoring the intestinal microbiota structure and fitness parameters of sterile insects, particularly in the Vienna 8 genetic sexing strain (V8-GSS) of the Mediterranean fruit fly (medfly), Ceratitis capitata. Here, we explore the influence of the previously isolated bacterial strain, Lactococcus lactis, Enterobacter sp., and Klebsiella oxytoca, administration as probiotic consortia (LEK-PC) to the larvae and/or adult diet over the course of 20 rearing generations on fitness parameters. The experiment was carried out in four colonies: a control colony (C), one to which probiotics were not added, one to which probiotics were added to the larval medium (L+), one to which probiotics were added to the adult medium (A+), and one to which probiotics were added to both the larval and adult mediums (AL+). Emergence, flight ability, survival under stress conditions, and mating competitiveness, were all significantly improved by the LEK-PC treatment independently of the administration stage. The intestinal microbiota structure of various medfly V8-GSS colonies also underwent a significant shift, despite the fact that the core microbial community was unaffected by the LEK-PC administration stage, according to 16S metagenomics sequencing. Comparison of the metabolic function prediction and associated carbohydrate enzymes among colonies treated with "LEK-PC" showed an enrichment of metabolic functions related to carbohydrates, amino acids, cofactors, and vitamins metabolism, as well as, glycoside hydrolase enzymes in the AL+ colony compared to the control. This study enriches the knowledge regarding the benefits of probiotic treatment to modulate and restore the intestinal microbiota of C. capitata sterile males for a better effectiveness of the SIT.
Collapse
Affiliation(s)
- Hamden Haytham
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Charaabi Kamel
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Djobbi Wafa
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Fadhel Salma
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia
| | - Bel Mokhtar Naima
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
- Laboratory of Innovative Technology, National School of Applied Sciences of Tangier, Abdelmalek Essâadi University, Tétouan, Morocco
| | - Tsiamis George
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, Agrinio, Greece
| | - Cherif Ameur
- Higher Institute of Biotechnology Sidi Thabet, BVBGR-LR11ES31, University of Manouba, Biotechpole Sidi Thabet, Ariana, Tunisia
| | - Meriem Msaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies, LR16CNSTN01, National Centre of Nuclear Sciences and Technologies, Sidi Thabet, Tunisia.
| |
Collapse
|
3
|
Castro-Vargas C, Pandey G, Yeap HL, Prasad SS, Lacey MJ, Lee SF, Park SJ, Taylor PW, Oakeshott JG. Genetic variation for rectal gland volatiles among recently collected isofemale lines and a domesticated strain of Queensland fruit fly, Bactrocera tryoni (Diptera: Tephritidae). PLoS One 2023; 18:e0285099. [PMID: 37115788 PMCID: PMC10146519 DOI: 10.1371/journal.pone.0285099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Divergence between populations in mating behaviour can function as a potent premating isolating mechanism and promote speciation. However, very few cases of inherited intraspecific variation in sexual signalling have been reported in tephritid fruit flies, despite them being a highly speciose family. We tested for such variation in one tephritid, the Queensland fruit fly, Bactrocera tryoni (Qfly). Qfly mating behaviour depends on volatiles secreted from male rectal glands but no role for the volatiles from female rectal glands has yet been reported. We previously detected over 100 volatile compounds in male rectal glands and identified over 30 of them. Similar numbers were recorded in females. However, many compounds showed presence/absence differences between the sexes and many others showed quantitative differences between them. Here we report inherited variation among 24 Qfly lines (23 isofemale lines established from recent field collections and one domesticated line) in the abundance of three esters, two alcohols, two amides, an aldehyde and 18 unidentified volatiles in male rectal glands. We did not find any compounds in female rectal glands that varied significantly among the lines, although this may at least partly reflect lower female sample numbers. Most of the 26 male compounds that differed between lines were more abundant in the domesticated line than any of the recently established isofemale lines, which concurs with other evidence for changes in mating behaviour during domestication of this species. There were also large differences in several of the 26 compounds among the isofemale lines, and some of these differences were associated with the regions from which the lines were collected. While some of the variation in different compounds was correlated across lines, much of it was not, implicating involvement of multiple genes. Our findings parallel reports of geographic variation in other Qfly traits and point to inherited differences in reproductive physiology that could provide a basis for evolution of premating isolation between ecotypes.
Collapse
Affiliation(s)
- Cynthia Castro-Vargas
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Gunjan Pandey
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| | - Heng Lin Yeap
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Shirleen S Prasad
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Michael J Lacey
- National Collections and Marine Infrastructure, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
| | - Siu Fai Lee
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Soo J Park
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - Phillip W Taylor
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
- Australian Research Council Centre for Fruit Fly Biosecurity Innovation, Macquarie University, North Ryde, NSW, Australia
| | - John G Oakeshott
- Environment, Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT, Australia
- Applied BioSciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|