1
|
Messéan A, Álvarez F, Devos Y, Camargo AM. Assessment of the 2022 post-market environmental monitoring report on the cultivation of genetically modified maize MON 810 in the EU. EFSA J 2024; 22:e8986. [PMID: 39175623 PMCID: PMC11340014 DOI: 10.2903/j.efsa.2024.8986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024] Open
Abstract
Following a request from the European Commission, the European Food Safety Authority (EFSA) assessed the 2022 post-market environmental monitoring (PMEM) report on the cultivation of Cry1Ab-expressing maize event MON 810. Overall, the 2022 PMEM report provides no evidence of adverse effects of maize MON 810 cultivation. It shows a high level of compliance with refuge requirements by Spanish and Portuguese farmers growing maize MON 810, but uncertainty remains on compliance in areas where the clustered surface of maize MON 810 farms exceeds 5 ha. There are no signs of practical resistance to Cry1Ab in the field in corn borer populations collected in north-eastern Spain in 2022, although a decrease in Cry1Ab susceptibility in Mediterranean corn borer populations from this area cannot be excluded. Information retrieved through farmer questionnaires in Spain and from the scientific literature reveals no unanticipated adverse effects on human and animal health or the environment arising from the cultivation of maize MON 810. Uncertainties remain on whether 'very highly' and 'extremely' sensitive non-target lepidoptera are potentially exposed to harmful amounts of MON 810 pollen. EFSA notes that several recommendations made in the frame of the assessment of previous PMEM reports remain unaddressed and identified additional shortcomings in the 2022 PMEM report that require further consideration by the consent holder in future annual PMEM reports. Particularly, EFSA emphasises the urgent need to increase the sensitivity of the insect resistance monitoring strategy and implement mitigation measures to ensure that the exposure of non-target lepidoptera to maize MON 810 pollen is reduced to levels of no concern.
Collapse
|
2
|
Sappington TW. Aseasonal, undirected migration in insects: 'Invisible' but common. iScience 2024; 27:110040. [PMID: 38883831 PMCID: PMC11177203 DOI: 10.1016/j.isci.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Many insect pests are long-distance migrants, moving from lower latitudes where they overwinter to higher latitudes in spring to exploit superabundant, but seasonally ephemeral, host crops. These seasonal long-distance migration events are relatively easy to recognize, and justifiably garner much research attention. Evidence indicates several pest species that overwinter in diapause, and thus inhabit a year-round range, also engage in migratory flight, which is somewhat "invisible" because displacement is nondirectional and terminates among conspecifics. Support for aseasonal, undirected migration is related to recognizing true migratory flight behavior, which differs fundamentally from most other kinds of flight in that it is nonappetitive. Migrating adults are not searching for resources and migratory flight is not arrested by encounters with potential resources. The population-level consequence of aseasonal, undirected migration is spatial mixing of individuals within the larger metapopulation, which has important implications for population dynamics, gene flow, pest management, and insect resistance management.
Collapse
Affiliation(s)
- Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
3
|
Wei JZ, Lum A, Schepers E, Liu L, Weston RT, McGinness BS, Heckert MJ, Xie W, Kassa A, Bruck D, Rauscher G, Kapka-Kitzman D, Mathis JP, Zhao JZ, Sethi A, Barry J, Lu AL, Brugliera F, Lee EL, van derWeerden NL, Eswar N, Maher MJ, Anderson MA. Novel insecticidal proteins from ferns resemble insecticidal proteins from Bacillus thuringiensis. Proc Natl Acad Sci U S A 2023; 120:e2306177120. [PMID: 37871210 PMCID: PMC10622923 DOI: 10.1073/pnas.2306177120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/18/2023] [Indexed: 10/25/2023] Open
Abstract
Lepidopterans affect crop production worldwide. The use of transgenes encoding insecticidal proteins from Bacillus thuringiensis (Bt) in crop plants is a well-established technology that enhances protection against lepidopteran larvae. Concern about widespread field-evolved resistance to Bt proteins has highlighted an urgent need for new insecticidal proteins with different modes or sites of action. We discovered a new family of insecticidal proteins from ferns. The prototype protein from Pteris species (Order Polypodiales) and variants from two other orders of ferns, Schizaeales and Ophioglossales, were effective against important lepidopteran pests of maize and soybean in diet-based assays. Transgenic maize and soybean plants producing these proteins were more resistant to insect damage than controls. We report here the crystal structure of a variant of the prototype protein to 1.98 Å resolution. Remarkably, despite being derived from plants, the structure resembles the 3-domain Cry proteins from Bt but has only two out of three of their characteristic domains, lacking the C-terminal domain which is typically required for their activities. Two of the fern proteins were effective against strains of fall armyworm that were resistant to Bt 3-domain Cry proteins Cry1Fa or Cry2A.127. This therefore represents a novel family of insecticidal proteins that have the potential to provide future tools for pest control.
Collapse
Affiliation(s)
| | - Amy Lum
- Corteva Agriscience, Johnston, IA50131
| | | | - Lu Liu
- Corteva Agriscience, Johnston, IA50131
| | - Ross T. Weston
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Bruce S. McGinness
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | | | | | | | | | | | | | | | | | | | | | - Filippa Brugliera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Eunice L. Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | - Nicole L. van derWeerden
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| | | | - Megan J. Maher
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- School of Chemistry and The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC3052, Australia
| | - Marilyn A. Anderson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
- Hexima Ltd., La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC3086, Australia
| |
Collapse
|
4
|
Jin M, Shan Y, Peng Y, Wang W, Zhang H, Liu K, Heckel DG, Wu K, Tabashnik BE, Xiao Y. Downregulation of a transcription factor associated with resistance to Bt toxin Vip3Aa in the invasive fall armyworm. Proc Natl Acad Sci U S A 2023; 120:e2306932120. [PMID: 37874855 PMCID: PMC10622909 DOI: 10.1073/pnas.2306932120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/11/2023] [Indexed: 10/26/2023] Open
Abstract
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) have revolutionized control of some major pests. However, more than 25 cases of field-evolved practical resistance have reduced the efficacy of transgenic crops producing crystalline (Cry) Bt proteins, spurring adoption of alternatives including crops producing the Bt vegetative insecticidal protein Vip3Aa. Although practical resistance to Vip3Aa has not been reported yet, better understanding of the genetic basis of resistance to Vip3Aa is urgently needed to proactively monitor, delay, and counter pest resistance. This is especially important for fall armyworm (Spodoptera frugiperda), which has evolved practical resistance to Cry proteins and is one of the world's most damaging pests. Here, we report the identification of an association between downregulation of the transcription factor gene SfMyb and resistance to Vip3Aa in S. frugiperda. Results from a genome-wide association study, fine-scale mapping, and RNA-Seq identified this gene as a compelling candidate for contributing to the 206-fold resistance to Vip3Aa in a laboratory-selected strain. Experimental reduction of SfMyb expression in a susceptible strain using RNA interference (RNAi) or CRISPR/Cas9 gene editing decreased susceptibility to Vip3Aa, confirming that reduced expression of this gene can cause resistance to Vip3Aa. Relative to the wild-type promoter for SfMyb, the promoter in the resistant strain has deletions and lower activity. Data from yeast one-hybrid assays, genomics, RNA-Seq, RNAi, and proteomics identified genes that are strong candidates for mediating the effects of SfMyb on Vip3Aa resistance. The results reported here may facilitate progress in understanding and managing pest resistance to Vip3Aa.
Collapse
Affiliation(s)
- Minghui Jin
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Yinxue Shan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| | - Yan Peng
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan430070, China
| | - Wenhui Wang
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | - Huihui Zhang
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan430079, China
| | - David G. Heckel
- Department of Entomology, Max Planck Institute for Chemical Ecology, JenaD-07745, Germany
| | - Kongming Wu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing100193, China
| | | | - Yutao Xiao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen518116, China
| |
Collapse
|
5
|
Dively GP, Kuhar TP, Taylor SV, Doughty H, Holmstrom K, Gilrein DO, Nault BA, Ingerson-Mahar J, Huseth A, Reisig D, Fleischer S, Owens D, Tilmon K, Reay-Jones F, Porter P, Smith J, Saguez J, Wells J, Congdon C, Byker H, Jensen B, DiFonzo C, Hutchison WD, Burkness E, Wright R, Crossley M, Darby H, Bilbo T, Seiter N, Krupke C, Abel C, Coates BS, McManus B, Fuller B, Bradshaw J, Peterson JA, Buntin D, Paula-Moraes S, Kesheimer K, Crow W, Gore J, Huang F, Ludwick DC, Raudenbush A, Jimenez S, Carrière Y, Elkner T, Hamby K. Extended Sentinel Monitoring of Helicoverpa zea Resistance to Cry and Vip3Aa Toxins in Bt Sweet Corn: Assessing Changes in Phenotypic and Allele Frequencies of Resistance. INSECTS 2023; 14:577. [PMID: 37504584 PMCID: PMC10380249 DOI: 10.3390/insects14070577] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Transgenic corn and cotton that produce Cry and Vip3Aa toxins derived from Bacillus thuringiensis (Bt) are widely planted in the United States to control lepidopteran pests. The sustainability of these Bt crops is threatened because the corn earworm/bollworm, Helicoverpa zea (Boddie), is evolving a resistance to these toxins. Using Bt sweet corn as a sentinel plant to monitor the evolution of resistance, collaborators established 146 trials in twenty-five states and five Canadian provinces during 2020-2022. The study evaluated overall changes in the phenotypic frequency of resistance (the ratio of larval densities in Bt ears relative to densities in non-Bt ears) in H. zea populations and the range of resistance allele frequencies for Cry1Ab and Vip3Aa. The results revealed a widespread resistance to Cry1Ab, Cry2Ab2, and Cry1A.105 Cry toxins, with higher numbers of larvae surviving in Bt ears than in non-Bt ears at many trial locations. Depending on assumptions about the inheritance of resistance, allele frequencies for Cry1Ab ranged from 0.465 (dominant resistance) to 0.995 (recessive resistance). Although Vip3Aa provided high control efficacy against H. zea, the results show a notable increase in ear damage and a number of surviving older larvae, particularly at southern locations. Assuming recessive resistance, the estimated resistance allele frequencies for Vip3Aa ranged from 0.115 in the Gulf states to 0.032 at more northern locations. These findings indicate that better resistance management practices are urgently needed to sustain efficacy the of corn and cotton that produce Vip3Aa.
Collapse
Affiliation(s)
- Galen P Dively
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| | - Tom P Kuhar
- Department of Entomology, Virginia Tech, Blacksburg, VA 24060, USA
| | - Sally V Taylor
- Department of Entomology, Virginia Tech, Suffolk, VA 23434, USA
| | | | - Kristian Holmstrom
- Pest Management Office, Rutgers University, New Brunswick, NJ 08901, USA
| | | | - Brian A Nault
- Department of Entomology, Cornell AgriTech, Geneva, NY 14456, USA
| | - Joseph Ingerson-Mahar
- Rutgers Agricultural Research and Extension Center, Rutgers University, Bridgeton, NJ 08302, USA
| | - Anders Huseth
- Department of Entomology and Plant Pathology, NC State University, Raleigh, NC 27601, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC 27962, USA
| | - Shelby Fleischer
- Department of Entomology, Penn State University, University Park, PA 16802, USA
| | - David Owens
- Cooperative Extension, Carvel REC, University of Delaware, Georgetown, DE 19947, USA
| | - Kelley Tilmon
- Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Francis Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Florence, SC 29501, USA
| | - Pat Porter
- Department of Entomology, AgriLife Research and Extension Center, Texas A&M University, Lubbock, TX 79401, USA
| | - Jocelyn Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, ON N1G 2W1, Canada
| | - Julien Saguez
- CEROM, 740 Chemin Trudeau, Saint-Mathieu-de-Beloeil, QC J3G 0E2, Canada
| | - Jason Wells
- New Brunswick Department of Agriculture, Sussex, NB E4E 5L8, Canada
| | - Caitlin Congdon
- Perennia Food and Agriculture, Kentville, NS B4N 1J5, Canada
| | - Holly Byker
- Department of Plant Agriculture, University of Guelph, Winchester, ON N1G 2W1, Canada
| | - Bryan Jensen
- Arlington Agricultural Research Station, University of Wisconsin, WI 53706, USA
| | - Chris DiFonzo
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Eric Burkness
- Department of Entomology, University of Minnesota, St. Paul, MN 55455, USA
| | - Robert Wright
- Department of Entomology, University of Nebraska-Lincoln, NE 68588, USA
| | - Michael Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19711, USA
| | - Heather Darby
- Department of Plant and Soil Sciences, University of Vermont, Burlington, VT 05405, USA
| | - Tom Bilbo
- Department of Plant and Environmental Sciences, Clemson University, Charleston, SC 29414, USA
| | - Nicholas Seiter
- Illinois Extension, University of Illinois, Urbana, IL 61820, USA
| | - Christian Krupke
- Department of Entomology, Purdue University, West Lafayette, IN 47906, USA
| | - Craig Abel
- USDA-ARS Corn Insects and Crop Genetics Research, Iowa State University, Ames, IA 50011, USA
| | - Brad S Coates
- USDA-ARS Corn Insects and Crop Genetics Research, Iowa State University, Ames, IA 50011, USA
| | | | | | - Jeffrey Bradshaw
- Panhandle Research and Extension Center, Scottsbluff, NE 69361, USA
| | - Julie A Peterson
- West Central Research and Extension Center, University of Nebraska, North Platte, NE 69101, USA
| | - David Buntin
- Griffin Campus, University of Georgia, Griffin, GA 30223, USA
| | | | - Katelyn Kesheimer
- Department of Entomology & Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Whitney Crow
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 39762, USA
| | - Jeffrey Gore
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Delta Research and Extension Center, Mississippi State University, Stoneville, MS 39762, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Dalton C Ludwick
- Department of Entomology, Texas A&M AgriLife Extension Service, Corpus Christi, TX 78404, USA
| | - Amy Raudenbush
- Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Sebastian Jimenez
- PEI Department of Agriculture and Land, Charlotte, PE C1A 7N8, Canada
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ 85721, USA
| | - Timothy Elkner
- Southeast Research and Extension Center, Landisville, PA 17538, USA
| | - Kelly Hamby
- Department of Entomology, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
6
|
Farhan Y, Smith JL, Sovic MG, Michel AP. Genetic mutations linked to field-evolved Cry1Fa-resistance in the European corn borer, Ostrinia nubilalis. Sci Rep 2023; 13:8081. [PMID: 37202428 DOI: 10.1038/s41598-023-35252-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023] Open
Abstract
Transgenic corn, Zea mays (L.), expressing insecticidal toxins such as Cry1Fa, from Bacillus thuringiensis (Bt corn) targeting Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae) resulted in over 20 years of management success. The first case of practical field-evolved resistance by O. nubilalis to a Bt corn toxin, Cry1Fa, was discovered in Nova Scotia, Canada, in 2018. Laboratory-derived Cry1Fa-resistance by O. nubilalis was linked to a genome region encoding the ATP Binding Cassette subfamily C2 (ABCC2) gene; however, the involvement of ABCC2 and specific mutations in the gene leading to resistance remain unknown. Using a classical candidate gene approach, we report on O. nubilalis ABCC2 gene mutations linked to laboratory-derived and field-evolved Cry1Fa-resistance. Using these mutations, a DNA-based genotyping assay was developed to test for the presence of the Cry1Fa-resistance alleles in O. nubilalis strains collected in Canada. Screening data provide strong evidence that field-evolved Cry1Fa-resistance in O. nubilalis maps to the ABCC2 gene and demonstrates the utility of this assay for detecting the Cry1Fa resistance allele in O. nubilalis. This study is the first to describe mutations linked to Bt resistance in O. nubilalis and provides a DNA-based detection method that can be used for monitoring.
Collapse
Affiliation(s)
- Yasmine Farhan
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada.
| | - Jocelyn L Smith
- Department of Plant Agriculture, University of Guelph, Ridgetown Campus, Ridgetown, ON, Canada
| | - Michael G Sovic
- Infectious Diseases Institute, The Ohio State University, Pickerington, OH, USA
| | - Andrew P Michel
- Department of Entomology, The Ohio State University, Wooster, OH, USA
| |
Collapse
|
7
|
Tabashnik BE, Carrière Y, Wu Y, Fabrick JA. Global perspectives on field-evolved resistance to transgenic Bt crops: a special collection. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:269-274. [PMID: 37018465 DOI: 10.1093/jee/toad054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/02/2023] [Accepted: 03/15/2023] [Indexed: 05/30/2023]
Abstract
Crops genetically engineered to produce insect-killing proteins from Bacillus thuringiensis (Bt) have revolutionized management of some major pests, but their efficacy is reduced when pests evolve resistance. Practical resistance, which is field-evolved resistance that reduces the efficacy of Bt crops and has practical implications for pest management, has been reported in 26 cases in seven countries involving 11 pest species. This special collection includes six original papers that present a global perspective on field-evolved resistance to Bt crops. One is a synthetic review providing a comprehensive global summary of the status of the resistance or susceptibility to Bt crops of 24 pest species in 12 countries. Another evaluates the inheritance and fitness costs of resistance of Diabrotica virgifera virgifera to Gpp34/Tpp35Ab (formerly called Cry34/35Ab). Two papers describe and demonstrate advances in techniques for monitoring field-evolved resistance. One uses a modified F2 screen for resistance to Cry1Ac and Cry2Ab in Helicoverpa zea in the United States. The other uses genomics to analyze nonrecessive resistance to Cry1Ac in Helicoverpa armigera in China. Two papers provide multi-year monitoring data for resistance to Bt corn in Spain and Canada, respectively. The monitoring data from Spain evaluate responses to Cry1Ab of the corn borers Sesamia nonagrioides and Ostrinia nubilalis, whereas the data from Canada track responses of O. nubilalis to Cry1Ab, Cry1Fa, Cry1A.105, and Cry2Ab. We hope the new methods, results, and conclusions reported here will spur additional research and help to enhance the sustainability of current and future transgenic insecticidal crops.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| | - Yidong Wu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Jeffrey A Fabrick
- USDA ARS, U.S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| |
Collapse
|