1
|
Wei F, Huang W, Fang L, He B, Zhao Y, Zhang Y, Shu Z, Su C, Hao J. Spatio-Temporal Evolutionary Patterns of the Pieridae Butterflies (Lepidoptera: Papilionoidea) Inferred from Mitogenomic Data. Genes (Basel) 2022; 14:72. [PMID: 36672814 PMCID: PMC9858963 DOI: 10.3390/genes14010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/17/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Pieridae is one of the largest and almost cosmopolitan groups of butterflies, which plays an important role in natural ecosystems; however, to date, its phylogeny and evolutionary history have not been fully resolved. In this study, we obtained the complete or nearly complete mitochondrial genomes of 100 pierid taxa (six newly sequenced, sixty extracted from the whole-genome data, and thirty-four directly available from GenBank). At the same time, for the first time, we conducted comparative mitogenomic and phylogenetic analyses based on these mitogenomic data, to further clarify their spatio-temporal evolutionary patterns. Comparative mitogenomic analysis showed that, except for cox2, the GC content of each of the 13 protein-coding genes (PCGs) in the rapidly diverging subfamily Pierinae was higher than in its sister group Coliadinae. Moreover, the dN/dS values of nine genes (atp6, atp8, cox1, cox3, cob, nad1, nad3, nad5, and nad6) in Pierinae were also relatively higher than those in its sister group, Coliadinae. Phylogenetic analysis showed that all the resultant phylogenetic trees were generally in agreement with those of previous studies. The Pierinae family contained six clades in total with the relationship of (Leptosiaini + (((Nepheroniini + Arthocharidini) + Teracolini) + (Pierini + Elodini))). The Pieridae originated in the Palearctic region approximately 72.3 million years ago in the late Cretaceous, and the subfamily Pierinae diverged from this family around 57.9 million years ago in the Oriental region, shortly after the K-Pg mass extinction event; in addition, the spatio-temporal evolutionary patterns of Pierinae were closely correlated with geological events and environmental changes, as well as the host plant coevolutionary scenario in Earth's history. However, some incongruencies were observed between our results and those of previous studies in terms of shallow phylogenies for a few taxa, and should be further investigated.
Collapse
Affiliation(s)
- Fanyu Wei
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Wenxiang Huang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Lin Fang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Bo He
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Youjie Zhao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Yingming Zhang
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China
| | - Zufei Shu
- Guangdong Chebaling National Nature Reserve Administration Bureau, Shaoguan 512500, China
| | - Chengyong Su
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| | - Jiasheng Hao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
2
|
Govindharaj GPP, Babu SB, Choudhary JS, Asad M, Chidambaranathan P, Gadratagi BG, Rath PC, Naaz N, Jaremko M, Qureshi KA, Kumar U. Genome Organization and Comparative Evolutionary Mitochondriomics of Brown Planthopper, Nilaparvata lugens Biotype 4 Using Next Generation Sequencing (NGS). Life (Basel) 2022; 12:life12091289. [PMID: 36143326 PMCID: PMC9506247 DOI: 10.3390/life12091289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/13/2022] [Accepted: 08/15/2022] [Indexed: 11/27/2022] Open
Abstract
Nilaparvata lugens is the main rice pest in India. Until now, the Indian N. lugens mitochondrial genome has not been sequenced, which is a very important basis for population genetics and phylogenetic evolution studies. An attempt was made to sequence two examples of the whole mitochondrial genome of N. lugens biotype 4 from the Indian population for the first time. The mitogenomes of N. lugens are 16,072 and 16,081 bp long with 77.50% and 77.45% A + T contents, respectively, for both of the samples. The mitochondrial genome of N. lugens contains 37 genes, including 13 protein-coding genes (PCGs) (cox1-3, atp6, atp8, nad1-6, nad4l, and cob), 22 transfer RNA genes, and two ribosomal RNA (rrnS and rrnL) subunits genes, which are typical of metazoan mitogenomes. However, both samples of N. lugens mitogenome in the present study retained one extra copy of the trnC gene. Additionally, we also found 93 bp lengths for the atp8 gene in both of the samples, which were 60–70 bp less than that of the other sequenced mitogenomes of hemipteran insects. The phylogenetic analysis of the 19 delphacids mitogenome dataset yielded two identical topologies when rooted with Ugyops sp. in one clade, and the remaining species formed another clade with P. maidis and M. muiri being sisters to the remaining species. Further, the genus Nilaparvata formed a separate subclade with the other genera (Sogatella, Laodelphax, Changeondelphax, and Unkanodes) of Delphacidae. Additionally, the relationship among the biotypes of N. lugens was recovered as the present study samples (biotype-4) were separated from the three biotypes reported earlier. The present study provides the reference mitogenome for N. lugens biotype 4 that may be utilized for biotype differentiation and molecular-aspect-based future studies of N. lugens.
Collapse
Affiliation(s)
- Guru-Pirasanna-Pandi Govindharaj
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, India
- Correspondence: (G.-P.-P.G.); (J.S.C.); (U.K.)
| | - Soumya Bharti Babu
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Jaipal Singh Choudhary
- ICAR-Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi 834010, India
- Correspondence: (G.-P.-P.G.); (J.S.C.); (U.K.)
| | - Muhammad Asad
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | | | - Basana-Gowda Gadratagi
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Prakash Chandra Rath
- Division of Crop Protection, ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Naiyar Naaz
- ICAR-Research Complex for Eastern Region, Farming System Research Centre for Hill and Plateau Region, Ranchi 834010, India
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Kamal Ahmad Qureshi
- Department of Pharmaceutics, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia
| | - Uttam Kumar
- College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (G.-P.-P.G.); (J.S.C.); (U.K.)
| |
Collapse
|
3
|
A New Mitochondrial Genome of Sogatella furcifera (Horváth) (Hemiptera: Delphacidae) and Mitogenome-Wide Investigation on Polymorphisms. INSECTS 2021; 12:insects12121066. [PMID: 34940154 PMCID: PMC8706918 DOI: 10.3390/insects12121066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/16/2021] [Accepted: 11/25/2021] [Indexed: 01/23/2023]
Abstract
Simple Summary We completed one mitogenome of white-backed planthopper (WBPH), Sogatella furcifera (Horváth), with finding heteroplasmy phenomenon confirmed by PCR reaction and Sanger sequencing method. This heteroplasmy was not observed in WBPHs (n = 24) collected from the fields, suggesting that it may be uncommon in fields. We also analyzed single nucleotide polymorphisms, insertion and deletions, and simple sequence repeats among three currently available WBPH mitogenomes of Korea and China, suggesting that identified intraspecific variations could be potential candidates for developing markers to distinguish geographical populations of WBPH including Korean and Chinese. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. Abstract White-backed planthopper (WBPH), Sogatella furcifera (Horváth), is one of the major sap-sucking rice pests in East Asia. We have determined a new complete mitochondrial genome of WBPH collected in the Korean peninsula using NGS technology. Its length and GC percentages are 16,613 bp and 23.8%, respectively. We observed one polymorphic site, a non-synonymous change, in the COX3 gene with confirmation heteroplasmy phenomenon within individuals of WBPH by PCR amplification and Sanger sequencing, the first report in this species. In addition, this heteroplasmy was not observed in wild WBPH populations, suggesting that it may be uncommon in fields. We analyzed single nucleotide polymorphisms, insertion, and deletions, and simple sequence repeats among the three WBPH mitogenomes from Korea and China and found diverse intraspecific variations, which could be potential candidates for developing markers to distinguish geographical populations. Phylogenetic analysis of 32 mitogenomes of Delphacidae including the three WBPH mitogenomes suggested that Delphacinae seems to be monophyletic and Sogatella species including WBPH are clearly formed as one clade. In the future, it is expected that complete mitogenomes of individuals of geographically dispersed WBPH populations will be used for further population genetic studies to understand the migration pathway of WBPH.
Collapse
|
4
|
Gong N, Yang L, Chen X. Comparative analysis of twelve mitogenomes of Caliscelidae (Hemiptera: Fulgoromorpha) and their phylogenetic implications. PeerJ 2021; 9:e12465. [PMID: 34820192 PMCID: PMC8603831 DOI: 10.7717/peerj.12465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/19/2021] [Indexed: 12/03/2022] Open
Abstract
Here, the complete mitochondrial genomes (mitogenomes) of 12 Caliscelidae species, Augilina tetraina, Augilina triaina, Symplana brevistrata, Symplana lii, Neosymplana vittatum, Pseudosymplanella nigrifasciata, Symplanella brevicephala, Symplanella unipuncta, Augilodes binghami, Cylindratus longicephalus, Caliscelis shandongensis, and Peltonotellus sp., were determined and comparatively analyzed. The genomes varied from 15,424 to 16,746 bp in size, comprising 37 mitochondrial genes and an A+T-rich region. The typical gene content and arrangement were similar to those of most Fulgoroidea species. The nucleotide compositions of the mitogenomes were biased toward A/T. All protein-coding genes (PCGs) started with a canonical ATN or GTG codon and ended with TAN or an incomplete stop codon, single T. Among 13 PCGs in 16 reported Caliscelidae mitogenomes, cox1 and atp8 showed the lowest and highest nucleotide diversity, respectively. All PCGs evolved under purifying selection, with atp8 considered a comparatively fast-evolving gene. Phylogenetic relationships were reconstructed based on 13 PCGs in 16 Caliscelidae species and five outgroups using maximum likelihood and Bayesian inference analyses. All species of Caliscelidae formed a steadily monophyletic group with high support. Peltonotellini was present at the basal position of the phylogenetic tree. Augilini was the sister group to Caliscelini and Peltonotellini.
Collapse
Affiliation(s)
- Nian Gong
- Guizhou University, Institute of Entomology, Guiyang, Guizhou, China
- Guizhou University, The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guiyang, Guizhou, China
- Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, Guizhou, China
| | - Lin Yang
- Guizhou University, Institute of Entomology, Guiyang, Guizhou, China
- Guizhou University, The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guiyang, Guizhou, China
- Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, Guizhou, China
| | - Xiangsheng Chen
- Guizhou University, Institute of Entomology, Guiyang, Guizhou, China
- Guizhou University, The Provincial Special Key Laboratory for Development and Utilization of Insect Resources, Guiyang, Guizhou, China
- Guizhou University, The Provincial Key Laboratory for Agricultural Pest Management of Mountainous Regions, Guiyang, Guizhou, China
| |
Collapse
|
5
|
Complete Mitochondrial Genomes of Metcalfa pruinosa and Salurnis marginella (Hemiptera: Flatidae): Genomic Comparison and Phylogenetic Inference in Fulgoroidea. Curr Issues Mol Biol 2021; 43:1391-1418. [PMID: 34698117 PMCID: PMC8929015 DOI: 10.3390/cimb43030099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 09/25/2021] [Accepted: 09/27/2021] [Indexed: 12/30/2022] Open
Abstract
The complete mitochondrial genomes (mitogenomes) of two DNA barcode-defined haplotypes of Metcalfa pruinosa and one of Salurnis marginella (Hemiptera: Flatidae) were sequenced and compared to those of other Fulgoroidea species. Furthermore, the mitogenome sequences were used to reconstruct phylogenetic relationships among fulgoroid families. The three mitogenomes, including that of the available species of Flatidae, commonly possessed distinctive structures in the 1702-1836 bp A+T-rich region, such as two repeat regions at each end and a large centered nonrepeat region. All members of the superfamily Fulgoroidea, including the Flatidae, consistently possessed a motiflike sequence (TAGTA) at the ND1 and trnS2 junction. The phylogenetic analyses consistently recovered the familial relationships of (((((Ricaniidae + Issidae) + Flatidae) + Fulgoridae) + Achilidae) + Derbidae) in the amino acid-based analysis, with the placement of Cixiidae and Delphacidae as the earliest-derived lineages of fulgoroid families, whereas the monophyly of Delphacidae was not congruent between tree-constructing algorithms.
Collapse
|
6
|
Wang W, Zhang H, Constant J, Bartlett CR, Qin D. Characterization, Comparative Analysis and Phylogenetic Implications of Mitogenomes of Fulgoridae (Hemiptera: Fulgoromorpha). Genes (Basel) 2021; 12:genes12081185. [PMID: 34440359 PMCID: PMC8394797 DOI: 10.3390/genes12081185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
The complete mitogenomes of nine fulgorid species were sequenced and annotated to explore their mitogenome diversity and the phylogenetics of Fulgoridae. All species are from China and belong to five genera: Dichoptera Spinola, 1839 (Dichoptera sp.); Neoalcathous Wang and Huang, 1989 (Neoalcathous huangshanana Wang and Huang, 1989); Limois Stål, 1863 (Limois sp.); Penthicodes Blanchard, 1840 (Penthicodes atomaria (Weber, 1801), Penthicodes caja (Walker, 1851), Penthicodes variegata (Guérin-Méneville, 1829)); Pyrops Spinola, 1839 (Pyrops clavatus (Westwood, 1839), Pyrops lathburii (Kirby, 1818), Pyrops spinolae (Westwood, 1842)). The nine mitogenomes were 15,803 to 16,510 bp in length with 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), 2 ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). Combined with previously reported fulgorid mitogenomes, all PCGs initiate with either the standard start codon of ATN or the nonstandard GTG. The TAA codon was used for termination more often than the TAG codon and the incomplete T codon. The nad1 and nad4 genes varied in length within the same genus. A high percentage of F residues were found in the nad4 and nad5 genes of all fulgorid mitogenomes. The DHU stem of trnV was absent in the mitogenomes of all fulgorids sequenced except Dichoptera sp. Moreover, in most fulgorid mitogenomes, the trnL2, trnR, and trnT genes had an unpaired base in the aminoacyl stem and trnS1 had an unpaired base in the anticodon stem. The similar tandem repeat regions of the control region were found in the same genus. Phylogenetic analyses were conducted based on 13 PCGs and two rRNA genes from 53 species of Fulgoroidea and seven outgroups. The Bayesian inference and maximum likelihood trees had a similar topological structure. The major results show that Fulgoroidea was divided into two groups: Delphacidae and ((Achilidae + (Lophopidae + (Issidae + (Flatidae + Ricaniidae)))) + Fulgoridae). Furthermore, the monophyly of Fulgoridae was robustly supported, and Aphaeninae was divided into Aphaenini and Pyropsini, which includes Neoalcathous, Pyrops, Datua Schmidt, 1911, and Saiva Distant, 1906. The genus Limois is recovered in the Aphaeninae, and the Limoisini needs further confirmation; Dichoptera sp. was the earliest branch in the Fulgoridae.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Xianyang 712100, China; (W.W.); (H.Z.)
| | - Huan Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Xianyang 712100, China; (W.W.); (H.Z.)
| | - Jérôme Constant
- O.D. Phylogeny and Taxonomy, Entomology, Royal Belgian Institute of Natural Sciences, Vautier Street 29, 1000 Brussels, Belgium;
| | - Charles R. Bartlett
- Department of Entomology and Wildlife Ecology, University of Delaware, 250 Townsend Hall, 531 S. College Ave., Newark, DE 9716-2160, USA;
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Xianyang 712100, China; (W.W.); (H.Z.)
- Correspondence:
| |
Collapse
|
7
|
Lin S, Huang M, Zhang Y. Structural Features and Phylogenetic Implications of 11 New Mitogenomes of Typhlocybinae (Hemiptera: Cicadellidae). INSECTS 2021; 12:678. [PMID: 34442244 PMCID: PMC8396557 DOI: 10.3390/insects12080678] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/18/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the characteristics of mitogenomes and discuss the phylogenetic relationships and molecular evolution of the six tribes within Typhlocybinae, 11 complete mitogenomes are newly sequenced and comparatively analyzed. In all of these complete mitogenomes, the number and order of the genes are highly conserved in overall organization. The PCGs initiate with ATN/TTG/GTG and terminate with TAA/TAG/T. Almost all tRNAs are folded into the typical clover-leaf secondary structure. The control region is always variable in length and in numbers of multiple tandem repeat units. The atp8 and nad2 exhibits the highest evolution rate among all the PCGs. Phylogenetic analyses based on whole mitogenome sequences, with three different datasets, using both maximum likelihood and Bayesian methods, indicate the monophyly of Typhlocybinae and its inner tribes, respectively, except for Typhlocybini and Zyginellini that are paraphyletic. Finally, we confirm that Erythroneurini is a subtribe of Dikraneurini.
Collapse
Affiliation(s)
| | | | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; (S.L.); (M.H.)
| |
Collapse
|
8
|
Lv SS, Zhang YJ, Gong N, Chen XS. Characterization and Phylogenetic Analysis of the Mitochondrial Genome Sequence of Nisia fuliginosa (Hemiptera: Fulgoroidea: Meenoplidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:8. [PMID: 34327530 PMCID: PMC8322432 DOI: 10.1093/jisesa/ieab050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Indexed: 06/13/2023]
Abstract
We explored characterization of the mitochondrial genome (mitogenome or mtGenome) and phylogenetic analysis between 32 Fulgoroid species by sequencing and analyzing the mitogenome of Nisia fuliginosa Yang and Hu, 1985 (Hemiptera: Fulgoroidea: Meenoplidae), thereby making it the first determined mitogenome from the family Meenoplidae. The mitogenome was found to be 15,754 bp in length and contained 13 protein-coding genes (PCGs), 22 tRNA genes, two ribosomal RNA genes (rRNAs), and a control region. All PCGs started with typical ATN codons, except for nad1, which used GTG as the start codon. Canonical TAA termination codons were found in 10 PCGs and the remaining three genes (cox2, nad6, and nad1) had incomplete stop codons T. All tRNAs could fold into typical cloverleaf secondary structures, with the exception of trnC, trnV, and trnS1. Additionally, we compared the AT and GC skews of 13 PCGs of 32 Fulgoroidea mitogenomes, on the L-strand, the AT and GC skews were negative and positive, respectively. However, on the H-strand, the AT skew could be positive or negative and the GC skew was always negative. Phylogenetic results showed that the eight families of Fulgoroidea were divided into two large groups. Delphacidae formed a monophyletic group sister to a clade comprising Meenoplidae and other six families (Fulgoridae, Ricaniidae, Flatidae, Issidae, Caliscelidae, and Achilidae). Meenoplidae was located near the clade of Delphacidae, and Fulgoridae was located near the clade of Meenoplidae. Furthermore, Caliscelidae, Issidae, Ricaniidae, and Flatidae are closely related and they collectively formed a sister group to Achilidae.
Collapse
Affiliation(s)
| | - Yu-Jie Zhang
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Nian Gong
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| | - Xiang-Sheng Chen
- Institute of Entomology and Special Key Laboratory for Development and Utilization of Insect Resources of Guizhou, Guizhou University, Guiyang 550025, China
| |
Collapse
|
9
|
Zheng X, Zhu L, He G. Genetic and molecular understanding of host rice resistance and Nilaparvata lugens adaptation. CURRENT OPINION IN INSECT SCIENCE 2021; 45:14-20. [PMID: 33227482 DOI: 10.1016/j.cois.2020.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The variability of brown planthopper (BPH) populations and diversity of the host rice germplasm provide an ideal model for exploring the genetic and molecular basis of insect-plant interactions. During the long-term evolutionary arms race, complicated feeding and defense strategies have developed in BPH and rice. Nine major BPH resistance genes have been cloned and the exploration of BPH resistance genes medicated mechanism against BPH shed a light on the molecular basis of the rice-BPH interaction. This short review provides an update on our current understanding of the genetic and molecular mechanism for rice resistance and BPH adaptation. Understanding the interactions between BPH and rice will provide novel insights for sustainable control of this pest.
Collapse
Affiliation(s)
- Xiaohong Zheng
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lili Zhu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Guangcun He
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
10
|
Ogoh K, Futahashi R, Ohmiya Y. Intraspecific nucleotide polymorphisms in seven complete sequences of mitochondrial DNA of the luminous ostracod, Vargula hilgendorfii (Crustacea, Ostracoda). GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ai D, Peng L, Qin D, Zhang Y. Characterization of Three Complete Mitogenomes of Flatidae (Hemiptera: Fulgoroidea) and Compositional Heterogeneity Analysis in the Planthoppers' Mitochondrial Phylogenomics. Int J Mol Sci 2021; 22:ijms22115586. [PMID: 34070437 PMCID: PMC8197536 DOI: 10.3390/ijms22115586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 11/16/2022] Open
Abstract
Although sequences of mitogenomes have been widely used for investigating phylogenetic relationship, population genetics, and biogeography in many members of Fulgoroidea, only one complete mitogenome of a member of Flatidae has been sequenced. Here, the complete mitogenomes of Cerynia lineola, Cromna sinensis, and Zecheuna tonkinensis are sequenced. The gene arrangements of the three new mitogenomes are consistent with ancestral insect mitogenomes. The strategy of using mitogenomes in phylogenetics remains in dispute due to the heterogeneity in base composition and the possible variation in evolutionary rates. In this study, we found compositional heterogeneity and variable evolutionary rates among planthopper mitogenomes. Phylogenetic analysis based on site-homogeneous models showed that the families (Delphacidae and Derbidae) with high values of Ka/Ks and A + T content tended to fall together at a basal position on the trees. Using a site-heterogeneous mixture CAT + GTR model implemented in PhyloBayes yielded almost the same topology. Our results recovered the monophyly of Fulgoroidea. In this study, we apply the heterogeneous mixture model to the planthoppers’ phylogenetic analysis for the first time. Our study is based on a large sample and provides a methodological reference for future phylogenetic studies of Fulgoroidea.
Collapse
Affiliation(s)
- Deqiang Ai
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Lingfei Peng
- Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fujian
Ag-riculture and Forestry University, Fuzhou 350002, Fujian, China;
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
- Correspondence: (D.Q.); (Y.Z.)
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of
Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China;
- Correspondence: (D.Q.); (Y.Z.)
| |
Collapse
|
12
|
Huang W, Zhang Y. Characterization of Two Complete Mitochondrial Genomes of Ledrinae (Hemiptera: Cicadellidae) and Phylogenetic Analysis. INSECTS 2020; 11:E609. [PMID: 32911645 PMCID: PMC7563726 DOI: 10.3390/insects11090609] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 11/23/2022]
Abstract
Mitochondrial genomes are widely used for investigations into phylogeny, phylogeography, and population genetics. More than 70 mitogenomes have been sequenced for the diverse hemipteran superfamily Membracoidea, but only one partial and two complete mtgenomes mitochondrial genomes have been sequenced for the included subfamily Ledrinae. Here, the complete mitochondrial genomes (mitogenomes) of two additional Ledrinae species are newly sequenced and comparatively analyzed. Results show both mitogenomes are circular, double-stranded molecules, with lengths of 14,927 bp (Tituria sagittata) and 14,918 bp (Petalocephala chlorophana). The gene order of these two newly sequenced Ledrinae is highly conserved and typical of members of Membracoidea. Similar tandem repeats in the control region were discovered in Ledrinae. Among 13 protein-coding genes (PCGs) of reported Ledrinae mitogenomes, analyses of the sliding window, nucleotide diversity, and nonsynonymous substitution (Ka)/synonymous substitution (Ks) indicate atp8 is a comparatively fast-evolving gene, while cox1 is the slowest. Phylogenetic relationships were also reconstructed for the superfamily Membracoidea based on expanded sampling and gene data from GenBank. This study shows that all subfamilies (sensu lato) are recovered as monophyletic. In agreement with previous studies, these results indicate that leafhoppers (Cicadellidae) are paraphyletic with respect to the two recognized families of treehoppers (Aetalionidae and Membracidae). Relationships within Ledrinae were recovered as (Ledra + (Petalocephala + Tituria)).
Collapse
Affiliation(s)
| | - Yalin Zhang
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China;
| |
Collapse
|
13
|
Wang W, Huang Y, Bartlett CR, Zhou F, Meng R, Qin D. Characterization of the complete mitochondrial genomes of two species of the genus Aphaena Guérin-Méneville (Hemiptera: Fulgoridae) and its phylogenetic implications. Int J Biol Macromol 2019; 141:29-40. [PMID: 31470055 DOI: 10.1016/j.ijbiomac.2019.08.222] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/19/2019] [Accepted: 08/26/2019] [Indexed: 12/27/2022]
Abstract
The complete mitochondrial genomes (mitogenomes) of Aphaena (Callidepsa) amabilis and Aphaena (Aphaena) discolor nigrotibiata were sequenced. The mitogenomes of these two species are 16,237 bp and 16,116 bp in length with an A + T content of 77.9% and 77.0%, respectively. Each contains 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and a control region (A + T-rich region). All PCGs initiate with the standard start codon of ATN and terminate with the complete stop codon of TAA or TAG except for atp6, where nad1 ends with an incomplete T codon. All tRNAs have the typical clover-leaf structure except for trnS1 and trnV which have a reduced DHU arm. Moreover, these two mitogenomes have trnL2, trnR and trnT with an unpaired base in the acceptor stem. The putative A + T-rich region includes multiple types of tandem repeat regions. These phylogenetic analyses are reconstructed based on 13 protein-coding genes of 25 auchenorrhynchan mitogenomes, with both maximum likelihood and Bayesian analyses yielding robust identical phylogenetic trees. These results support a monophyletic Auchenorrhyncha and the relationship (Pyrops + (Lycorma + Aphaena)) within Fulgoridae.
Collapse
Affiliation(s)
- Wenqian Wang
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yixin Huang
- Key Laboratory of Biotic Environment and Ecological Safety in Anhui Province, College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, China
| | - Charles R Bartlett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716, USA
| | - Fanmei Zhou
- Wuzhishan National Nature Reserve, Zhou Fanmei Photographic Art Gallery, Wuzhishan, Hainan 572200, China
| | - Rui Meng
- Post-Entry Quarantine Station for Tropical Plant, Haikou Customs District, Haikou, Hainan 570105, China
| | - Daozheng Qin
- Key Laboratory of Plant Protection Resources and Pest Management of the Ministry of Education, Entomological Museum, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
14
|
Park J, Kwon W, Park J, Kim HJ, Lee BC, Kim Y, Choi NJ. The complete mitochondrial genome of Nilaparvata lugens (stål, 1854) captured in Korea (Hemiptera: Delphacidae). Mitochondrial DNA B Resour 2019. [DOI: 10.1080/23802359.2019.1606680] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Jongsun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Woochan Kwon
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Jonghyun Park
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Hyun-Ju Kim
- Crop Foundation Division, National Institute of Crop Science, Wanju, Republic of Korea
| | - Bong-Choon Lee
- Crop Foundation Division, National Institute of Crop Science, Wanju, Republic of Korea
| | - Yongsung Kim
- InfoBoss Co., Ltd, Seoul, Republic of Korea
- InfoBoss Research Center, Seoul, Republic of Korea
| | - Nak Jung Choi
- Crop Foundation Division, National Institute of Crop Science, Wanju, Republic of Korea
| |
Collapse
|
15
|
Choi NJ, Lee BC, Park J, Park J. The complete mitochondrial genome of Nilaparvata lugens (Stål, 1854) captured in China (Hemiptera: Delphacidae): investigation of intraspecies variations between countries. MITOCHONDRIAL DNA PART B 2019. [DOI: 10.1080/23802359.2019.1606686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Nak Jung Choi
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, Republic of Korea
| | - Bong-Choon Lee
- Crop Foundation Division, National Institute of Crop Science, RDA, Wanju, Republic of Korea
| | - Jonghyun Park
- InfoBoss Co., Ltd., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| | - Jongsun Park
- InfoBoss Co., Ltd., Gangnam-gu, Seoul, Republic of Korea
- InfoBoss Research Center, Gangnam-gu, Seoul, Republic of Korea
| |
Collapse
|
16
|
Su T, He B, Li K, Liang A. Comparative analysis of the mitochondrial genomes of oriental spittlebug trible Cosmoscartini: insights into the relationships among closely related taxa. BMC Genomics 2018; 19:961. [PMID: 30587118 PMCID: PMC6307326 DOI: 10.1186/s12864-018-5365-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 12/12/2018] [Indexed: 11/29/2022] Open
Abstract
Background Cosmoscartini (Hemiptera: Cercopoidea: Cercopidae) is a large and brightly colored Old World tropical tribe, currently containing over 310 phytophagous species (including some economically important pests of eucalyptus in China) in approximately 17 genera. However, very limited information of Cosmoscartini is available except for some scattered taxonomic studies. Even less is known about its phylogenetic relationship, especially among closely related genera or species. In this study, the detailed comparative genomic and phylogenetic analyses were performed on nine newly sequenced mitochondrial genomes (mitogenomes) of Cosmoscartini, with the purpose of exploring the taxonomic status of the previously defined genus Okiscarta and some closely related species within the genus Cosmoscarta. Results Mitogenomes of Cosmoscartini display similar genomic characters in terms of gene arrangement, nucleotide composition, codon usage and overlapping regions. However, there are also many differences in intergenic spacers, mismatches of tRNAs, and the control region. Additionally, the secondary structures of rRNAs within Cercopidae are inferred for the first time. Based on comparative genomic (especially for the substitution pattern of tRNA secondary structure) and phylogenetic analyses, the representative species of Okiscarta uchidae possesses similar structures with other Cosmoscarta species and is placed consistently in Cosmoscarta. Although Cosmoscarta bimacula is difficult to be distinguished from Cosmoscarta bispecularis by traditional morphological methods, evidence from mitogenomes highly support the relationships of (C. bimacula + Cosmoscarta rubroscutellata) + (C. bispecularis + Cosmoscarta sp.). Conclusions This study presents mitogenomes of nine Cosmoscartini species and represents the first detailed comparative genomic and phylogenetic analyses within Cercopidae. It is indicated that knowledge of mitogenomes can be effectively used to resolve phylogenetic relationships at low taxonomic levels. Sequencing more mitogenomes at various taxonomic levels will also improve our understanding of mitogenomic evolution and phylogeny in Cercopidae. Electronic supplementary material The online version of this article (10.1186/s12864-018-5365-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tianjuan Su
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bo He
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, 410004, China
| | - Kui Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
17
|
Su T, Liang A. Comparative analysis of seven mitochondrial genomes of Phymatostetha (Hemiptera: Cercopidae) and phylogenetic implications. Int J Biol Macromol 2018; 125:1112-1117. [PMID: 30578900 DOI: 10.1016/j.ijbiomac.2018.12.174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 11/25/2022]
Abstract
In this study, we present seven mitochondrial genomes (mitogenomes) of Phymatostetha. Each mitogenome contains the entire set of 37 genes, which arranged in the same order as the putative ancestral pattern of insects. The nucleotide composition of Phymatostetha mitogenomes is biased toward A/T, with rRNAs and PCG12 (i.e. the first and second codon positions of PCGs) exhibit the highest and lowest A + T content, respectively. Relative synonymous codon usage of PCGs also show that degenerate codons are biased to use more A/T than G/C. All tRNAs exhibit typical clover-leaf structure, with the exception of trnS1. Additionally, unpaired nucleotides are detected in trnS1 anticodon stem and trnR acceptor stem. Phylogenetic relationships, based on the dataset of 13 PCGs, 22tRNAs, and two rRNAs, are analyzed using both the Bayesian and maximum likelihood methods. Our results clearly revealed the systematic status of Phymatostetha species and robustly supported the monophyly of this genus, in which Phymatostetha semele is sister to other Phymatostetha species. It was demonstrated that mitogenome was an effective molecular marker to adequately resolve phylogeny at low taxonomic levels.
Collapse
Affiliation(s)
- Tianjuan Su
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Aiping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Su T, Liang A. Characterization of the complete mitochondrial genome of Phymatostetha huangshanensis (Hemiptera: Cercopidae) and phylogenetic analysis. Int J Biol Macromol 2018; 119:60-69. [DOI: 10.1016/j.ijbiomac.2018.07.135] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 11/25/2022]
|
19
|
Characterization of the complete mitochondrial genome of Japanagallia spinosa and Durgades nigropicta (Hemiptera: Cicadellidae: Megophthalminae). BIOCHEM SYST ECOL 2017. [DOI: 10.1016/j.bse.2017.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
20
|
Velozo Timbó R, Coiti Togawa R, M. C. Costa M, A. Andow D, Paula DP. Mitogenome sequence accuracy using different elucidation methods. PLoS One 2017; 12:e0179971. [PMID: 28662089 PMCID: PMC5491103 DOI: 10.1371/journal.pone.0179971] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 06/07/2017] [Indexed: 12/03/2022] Open
Abstract
Mitogenome sequences are highly desired because they are used in several biological disciplines. Their elucidation has been facilitated through the development of massive parallel sequencing, accelerating their deposition in public databases. However, sequencing, assembly and annotation methods might induce variability in their quality, raising concerns about the accuracy of the sequences that have been deposited in public databases. In this work we show that different sequencing methods (number of species pooled in a library, insert size and platform) and assembly and annotation methods generated variable completeness and similarity of the resulting mitogenome sequences, using three species of predaceous ladybird beetles as models. The identity of the sequences varied considerably depending on the method used and ranged from 38.19 to 90.1% for Cycloneda sanguinea, 72.85 to 91.06% for Harmonia axyridis and 41.15 to 93.60% for Hippodamia convergens. Dissimilarities were frequently found in the non-coding A+T rich region, but were also common in coding regions, and were not associated with low coverage. Mitogenome completeness and sequence identity were affected by the sequencing and assembly/annotation methods, and high within-species variation was also found for other mitogenome depositions in GenBank. This indicates a need for methods to confirm sequence accuracy, and guidelines for verifying mitogenomes should be discussed and developed by the scientific community.
Collapse
Affiliation(s)
- Renata Velozo Timbó
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF, Brazil
- University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, Brazil
| | - Roberto Coiti Togawa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF, Brazil
| | - Marcos M. C. Costa
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF, Brazil
| | - David A. Andow
- Department of Entomology, University of Minnesota, 219 Hodson Hall, 1980 Folwell Ave., St. Paul, MN, United States of America
| | - Débora P. Paula
- Embrapa Genetic Resources and Biotechnology, Parque Estação Biológica, W5 Norte, Brasília, DF, Brazil
- * E-mail:
| |
Collapse
|