1
|
Yazdani M, Howse E, Tay WT, Spafford H, van Klinken RD. Lure specificity, phenology, and damage caused by Epiphyas moths (Lepidoptera: Tortricidae) in Western Australian apple orchards. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1959-1967. [PMID: 39046823 PMCID: PMC11473039 DOI: 10.1093/jee/toae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/10/2024] [Accepted: 07/10/2024] [Indexed: 07/27/2024]
Abstract
Multiple Epiphyas species inhabit southwestern Western Australia, including Light Brown Apple Moth (LBAM) Epiphyas postvittana (Walker) (Lepidoptera: Tortricidae), a globally significant, polyphagous pest. This study evaluated the efficacy and specificity of lures designed for 3 Epiphyas species: E. postvittana, Epiphyas pulla (Turner), and the undescribed Epiphyas sp. (1) (Common). Additionally, the study sought to determine the presence and distribution of Epiphyas species in 3 significant apple-growing localities. Trapping, together with partial sequencing of the mitochondrial COI gene, found LBAM to be restricted to the Perth Hills and E. pulla, to apple orchards near Manjimup and Pemberton. This geographic disjunction remains unexplained. Epiphyas sp. (1) was not recorded despite using a specifically designed lure. The E. pulla and LBAM traps demonstrated superior efficacy in capturing their target species, while the catch in Epiphyas sp. (1) traps did not significantly differ between the 2. Both E. pulla and LBAM exhibited peak abundance from late spring to the end of summer (October-February), with variations in timing and peak catch of male moths across species, locations, and years. Surveys conducted in April during the harvest period (February-May), when moth traps caught an average of 1-1.8 moths/trap/week, found no Epiphyas larvae or damage on 140,400 mature apples or on 26,000 leaves. While E. pulla and LBAM traps effectively monitor their target moths, genetic identification of trap catch would be necessary if they co-occurred. Encouragingly, the results indicate that both species become relatively rare as harvest season approaches, and neither inflicts significant damage to mature apples under existing management.
Collapse
Affiliation(s)
- Maryam Yazdani
- Commonwealth Scientific and Industrial Research Organisation (CSIRO ), Health & Biosecurity, Brisbane, QLD 4001, Australia
| | - Elliot Howse
- Department of Primary Industries and Regional Development (DPIRD), South Perth, WA, Australia
| | - Wee Tek Tay
- Commonwealth Scientific and Industrial Research Organisation (CSIRO ), Health & Biosecurity, Canberra, ACT 2601, Australia
| | - Helen Spafford
- Department of Primary Industries and Regional Development (DPIRD), South Perth, WA, Australia
| | - Rieks D van Klinken
- Commonwealth Scientific and Industrial Research Organisation (CSIRO ), Health & Biosecurity, Brisbane, QLD 4001, Australia
| |
Collapse
|
2
|
Sammani AMP, Dissanayaka DMSK, Wijayaratne LKW, Morrison WR. Effect of Pheromone Blend Components, Sex Ratio, and Population Size on the Mating of Cadra cautella (Lepidoptera: Pyralidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:ieaa128. [PMID: 33253387 PMCID: PMC7705437 DOI: 10.1093/jisesa/ieaa128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 05/05/2023]
Abstract
The almond moth Cadra cautella (Walker), a key pest of storage facilities, is difficult to manage using synthetic chemicals. Pheromone-based management methods remain a high priority due to advantages over conventional management practices, which typically use insecticides. Cadra cautella females release a blend of pheromone including (Z, E)-9,12-tetradecadienyl acetate (ZETA) and (Z)-9-tetradecadien-1-yl acetate (ZTA). The effect of these components on mating of C. cautella and how response varies with the population density and sex ratio remain unknown. In this study, the mating status of C. cautella was studied inside mating cages under different ratios of ZETA and ZTA diluted in hexane and at different population sizes either with equal or unequal sex ratio. The lowest percentage of mated females (highest mating disruption [MD] effects), corresponding to roughly 12.5%, was produced by a 5:1 and 3.3:1 ratio of ZETA:ZTA. Populations with equal sex ratio showed the lowest percentage of mated females, at 20% and 12.5% under lower and higher density, respectively. The next lowest percentage of mated females was produced when the sex ratio was set to 1: 2 and 2:1 male:female, with just 25% and 22.5% of moths mated, respectively. This study shows that mating status of C. cautella is influenced by ZETA:ZTA ratio, sex ratio, and population size. This current knowledge would have useful implications for mating disruption programs.
Collapse
Affiliation(s)
| | | | | | - William Robert Morrison
- USDA, Agricultural Research Service, Center for Grain and Animal Health Research, Manhattan, KS, USA
| |
Collapse
|
3
|
Burks CS, Thomson DR. Optimizing Efficiency of Aerosol Mating Disruption for Navel Orangeworm (Lepidoptera: Pyralidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:763-771. [PMID: 30753522 DOI: 10.1093/jee/toy417] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 06/09/2023]
Abstract
Improved cost efficiency for aerosol mating disruption for the navel orangeworm, Amyelois transitella Walker, was examined in experiments performed between 2015 and 2017. A programmable dispenser was used to explore the effects of frequency of treatment, time of night when pheromone was emitted, and the concentration of pheromone required. A negative curvilinear trend of males captured as a function of emission frequency was evident in the range of 2-12 emissions per hour. A subsequent experiment found greater trap suppression when the same amount of active ingredient was emitted seven times per hour compared with the same amount of material emitted at twice the concentration but half the frequency. Another experiment found no significant difference in cumulative trap suppression between treatment for the last 4 or 6 h of the night compared with 12 h. A subsequent experiment comparing a current commercial mating disruption system emitting for 12 h with a proposed alternative emitting more material per hour for fewer hours showed similar levels of suppression of males in pheromone traps. A season-long efficacy trial using dispensers deployed and programmed based on these findings demonstrated significant reduction of damage to Nonpareil almonds treated with mating disruption. These data reveal important information about the response of the navel orangeworm to aerosol mating disruption, which provides improved cost-effectiveness compared with the status quo ante. These findings for navel orangeworm are discussed in relation to studies of aerosol mating disruption for the codling moth, Cydia pomonella L. (Lepidoptera: Tortricidae).
Collapse
Affiliation(s)
- Charles S Burks
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA
| | | |
Collapse
|
4
|
Shadmany M, Boykin LM, Muhamad R, Omar D. Genetic Diversity of Bemisia tabaci (Hemiptera: Aleyrodidae) Species Complex Across Malaysia. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:75-84. [PMID: 30272175 DOI: 10.1093/jee/toy273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Indexed: 06/08/2023]
Abstract
The tobacco whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex with members capable of inducing huge economic losses. Precise identification of members of this complex proves essential in managing existing populations and preventing new incursions. Despite records of serious outbreaks of this pest in Malaysia little is known about species status of B. tabaci in this region. To address this, a comprehensive sampling of B. tabaci from different host plants was conducted in 10 states of Malaysia from 2010 to 2012. Members of the complex were identified by sequencing partial mitochondrial cytochrome oxidase subunit I (mtCOI) gene and constructing a Bayesian phylogenetic tree. Seven putative species were identified including Asia I, Mediterranean (MED), China 1, China 2, Asia II 6, Asia II 7, and Asia II 10. The most important finding of the study is the identification of the invasive MED species from locations without previous records of this species. All putative species except Asia I and MED are recorded from Malaysia for the first time. This study provided the first introductory map of B. tabaci species composition in Malaysia and emphasizes the urgent need for further studies to assess the status of MED invasion in this country.
Collapse
Affiliation(s)
- Mohammad Shadmany
- Department of Biological Sciences, Macquarie University, Sydney, Australia
| | - Laura M Boykin
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Perth, Australia
| | - R Muhamad
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| | - Dzolkhifli Omar
- Department of Plant Protection, Faculty of Agriculture, Universiti Putra Malaysia, Selangor, Malaysia
| |
Collapse
|
5
|
Suckling DM, Baker G, Salehi L, Woods B. Is the Combination of Insecticide and Mating Disruption Synergistic or Additive in Lightbrown Apple Moth, Epiphyas postvittana? PLoS One 2016; 11:e0160710. [PMID: 27500834 PMCID: PMC4976986 DOI: 10.1371/journal.pone.0160710] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 07/22/2016] [Indexed: 11/19/2022] Open
Abstract
Pest suppression from combinations of tactics is fundamental to pest management and eradication. Interactions may occur among tactical combinations and affect suppression. The best case is synergistic, where suppression from a combination is greater than the sum of effects from single tactics (AB >> A+B). We explored how mating disruption and insecticide interacted at field scale, additively or synergistically. Use of a pheromone delivery formulation (SPLAT™) as either a mating disruption treatment (i.e. a two-component pheromone alone) or as a lure and kill treatment (i.e. the two-component pheromone plus a permethrin insecticide) was compared for efficacy against the lightbrown apple moth Epiphyas postvittana. Next, four point-source densities of the SPLAT™ formulations were compared for communication disruption. Finally, the mating disruption and lure and kill treatments were applied with a broadcast insecticide. Population assessment used virgin female traps and synthetic pheromone in replicated 9-ha vineyard plots compared with untreated controls and insecticide-treated plots, to investigate interactions. Lure and kill and mating disruption provided equivalent suppression; no additional benefit accrued from including permethrin with the pheromone suggesting lack of contact. The highest point-source density tested (625/ha) was most effective. The insect growth regulator methoxyfenoxide applied by broadcast application lowered pest prevalence by 70% for the first ten weeks compared to pre-trial. Pheromone addition suppressed the pest further by an estimated 92.5%, for overall suppression of 97.7% from the treatment combination of insecticide plus mating disruption. This was close to that expected for an additive model of interactivity between insecticide and mating disruption (AB = A+B) estimated from plots with single tactics as 98% suppression in a combination. The results indicate the need to examine other tactical combinations to achieve the potential cost-efficiencies of synergistic interactions.
Collapse
Affiliation(s)
- David M. Suckling
- The New Zealand Institute for Plant & Food Research Limited, Christchurch, New Zealand and School of Biological Sciences, University of Auckland, Building 733, Tamaki Campus, Auckland, New Zealand
- Plant Biosecurity Cooperative Research Centre, Bruce ACT, Australia
- Better Border Biosecurity, Christchurch, New Zealand
- * E-mail:
| | - Greg Baker
- Plant Biosecurity Cooperative Research Centre, Bruce ACT, Australia
- Entomology Unit, South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Latif Salehi
- Plant Biosecurity Cooperative Research Centre, Bruce ACT, Australia
- Entomology Unit, South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Bill Woods
- Plant Biosecurity Cooperative Research Centre, Bruce ACT, Australia
- Department of Food and Agriculture, South Perth, WA, Australia
| |
Collapse
|
6
|
Lance DR, Leonard DS, Mastro VC, Walters ML. Mating Disruption as a Suppression Tactic in Programs Targeting Regulated Lepidopteran Pests in US. J Chem Ecol 2016; 42:590-605. [PMID: 27492468 DOI: 10.1007/s10886-016-0732-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 07/06/2016] [Accepted: 07/18/2016] [Indexed: 11/24/2022]
Abstract
Mating disruption, the broadcast application of sex-attractant pheromone to reduce the ability of insects to locate mates, has proven to be an effective method for suppressing populations of numerous moth pests. Since the conception of mating disruption, the species-specificity and low toxicity of pheromone applications has led to their consideration for use in area-wide programs to manage invasive moths. Case histories are presented for four such programs where the tactic was used in the United States: Pectinophora gossypiella (pink bollworm), Lymantria dispar (gypsy moth), Epiphyas postvittana (light brown apple moth), and Lobesia botrana (European grapevine moth). Use of mating disruption against P. gossypiella and L. botrana was restricted primarily to agricultural areas and relied in part (P. gossypiella) or wholly (L. botrana) on hand-applied dispensers. In those programs, mating disruption was integrated with other suppression tactics and considered an important component of overall efforts that are leading toward eradication of the invasive pests from North America. By contrast, L. dispar and E. postvittana are polyphagous pests, where pheromone formulations have been applied aerially as stand-alone treatments across broad areas, including residential neighborhoods. For L. dispar, mating disruption has been a key component in the program to slow the spread of the infestation of this pest, and the applications generally have been well tolerated by the public. For E. postvittana, public outcry halted the use of aerially applied mating disruption after an initial series of treatments, effectively thwarting an attempt to eradicate this pest from California. Reasons for the discrepancies between these two programs are not entirely clear.
Collapse
Affiliation(s)
- David R Lance
- USDA APHIS PPQ, CPHST Otis Laboratory, 1398 W Truck Rd, Buzzards Bay, MA, 02542, USA.
| | - Donna S Leonard
- USDA Forest Service, Southern Region, Forest Health Protection, 200 WT Weaver Blvd, Asheville, NC, 28804, USA
| | - Victor C Mastro
- USDA APHIS PPQ, CPHST Otis Laboratory, 1398 W Truck Rd, Buzzards Bay, MA, 02542, USA
| | - Michelle L Walters
- USDA APHIS PPQ, CPHST Phoenix Laboratory, 3645 E. Wier Ave, Phoenix, AZ, 85040, USA
| |
Collapse
|