1
|
Kamel AA, Aboelhadid SM, Abdel-Baki AAS, Ibrahium SM, Al-Quraishy S, Hassan AO, Abd El-Kareem SG, Gadelhaq SM. Benzoate Derivatives Toxicity to Musca domestica Results in Severe Muscle Relaxation and Body Distortion. NEOTROPICAL ENTOMOLOGY 2024; 53:972-983. [PMID: 38724884 DOI: 10.1007/s13744-024-01154-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/28/2024] [Indexed: 07/18/2024]
Abstract
The house fly, Musca domestica (Linnaeus) (Diptera: Muscidae), is a significant threat to human and animal health and is also resistant to a variety of insecticides. Plant-derived benzoates are known to have insecticidal activities against various insects. In this study, the larvicidal, pupicidal, and adulticidal activities of benzoate derivatives (benzyl alcohol BA, benzyl benzoate BB, and methyl benzoate MB) were assessed and investigated for their effects on larval structure and acetylcholinesterase activity. Six concentrations (2.5 to 100 mg/mL) of benzoate derivatives were applied to larvae and pupae through the residual film method and topical application, respectively. Meanwhile, concentrations from 0.625 to 50 mg/L air were applied to adult flies through a fumigation assay. BA and MB achieved promising results against larvae with LC50 values of 10.90 and 11.53 mg/mL, respectively. Moreover, BA killed 100% of the larvae at a concentration of 25 mg/mL, and MB achieved the same effect at a concentration of 50 mg/mL. Regarding the pupicidal activity, MB showed a percentage inhibition rate (PIR) of 100% at a concentration of 100 mg/mL, while the same effect was achieved by BA at a concentration of 50 mg/mL. Meanwhile, BB did not show any effect on the larvae or pupae at any of the tested concentrations. Moreover, the scanning microscopy observations on the treated larvae by BA and MB estimated flaccid and deformity in the larva body with a shrunken cuticle. Additionally, both BA and MB suppress nerve signal transmission by inhibiting acetylcholinesterase. In conclusion, the results of this study indicate that BA and MB may be useful in control housefly populations. These substances cause severe muscular relaxation and deformities in insects.
Collapse
Affiliation(s)
- Asmaa A Kamel
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt
| | - Shawky M Aboelhadid
- Parasitology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, 62511, Egypt.
| | | | - Samar M Ibrahium
- Department of Parasitology, Animal Health Research Institute, Fayum Branch, Egypt
| | - Saleh Al-Quraishy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed O Hassan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | | | - Sahar M Gadelhaq
- Parasitology Department, Faculty of Veterinary Medicine, Minia University, Minia, Egypt
| |
Collapse
|
2
|
Palma L, Frizzo L, Kaiser S, Berry C, Caballero P, Bode HB, Del Valle EE. Genome Sequence Analysis of Native Xenorhabdus Strains Isolated from Entomopathogenic Nematodes in Argentina. Toxins (Basel) 2024; 16:108. [PMID: 38393187 PMCID: PMC10892061 DOI: 10.3390/toxins16020108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Entomopathogenic nematodes from the genus Steinernema (Nematoda: Steinernematidae) are capable of causing the rapid killing of insect hosts, facilitated by their association with symbiotic Gram-negative bacteria in the genus Xenorhabdus (Enterobacterales: Morganellaceae), positioning them as interesting candidate tools for the control of insect pests. In spite of this, only a limited number of species from this bacterial genus have been identified from their nematode hosts and their insecticidal properties documented. This study aimed to perform the genome sequence analysis of fourteen Xenorhabdus strains that were isolated from Steinernema nematodes in Argentina. All of the strains were found to be able of killing 7th instar larvae of Galleria mellonella (L.) (Lepidoptera: Pyralidae). Their sequenced genomes harbour 110 putative insecticidal proteins including Tc, Txp, Mcf, Pra/Prb and App homologs, plus other virulence factors such as putative nematocidal proteins, chitinases and secondary metabolite gene clusters for the synthesis of different bioactive compounds. Maximum-likelihood phylogenetic analysis plus average nucleotide identity calculations strongly suggested that three strains should be considered novel species. The species name for strains PSL and Reich (same species according to % ANI) is proposed as Xenorhabdus littoralis sp. nov., whereas strain 12 is proposed as Xenorhabdus santafensis sp. nov. In this work, we present a dual insight into the biocidal potential and diversity of the Xenorhabdus genus, demonstrated by different numbers of putative insecticidal genes and biosynthetic gene clusters, along with a fresh exploration of the species within this genus.
Collapse
Affiliation(s)
- Leopoldo Palma
- Instituto de Biotecnología y Biomedicina (BIOTECMED), Departamento de Genética, Universitat de València, 46100 Burjassot, Spain
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires C1033AAJ, Argentina
- Instituto Multidisciplinario de Investigación y Transferencia Agroalimentaria y Biotecnológica (IMITAB), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de Villa María (UNVM), Villa María 1555, Argentina
| | - Laureano Frizzo
- ICIVET Litoral, CONICET-UNL, Departamento de Salud Pública, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Esperanza S3080, Argentina;
| | - Sebastian Kaiser
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany; (S.K.); (H.B.B.)
- Evolutionary Biochemistry Group, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Colin Berry
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK;
| | - Primitivo Caballero
- Institute for Multidisciplinary Research in Applied Biology, Universidad Pública de Navarra, 31006 Pamplona, Spain;
- Departamento de Investigación y Desarrollo, Bioinsectis SL, Polígono Industrial Mocholi Plaza Cein 5, Nave A14, 31110 Noain, Spain
| | - Helge B. Bode
- Department of Natural Products in Organismic Interactions, Max-Planck-Institute for Terrestrial Microbiology, 35043 Marburg, Germany; (S.K.); (H.B.B.)
- Molecular Biotechnology, Department of Biosciences, Goethe Universität Frankfurt, 60438 Frankfurt, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Phillips University Marburg, 35043 Marburg, Germany
- Department of Chemistry, Phillips University Marburg, 35043 Marburg, Germany
- Senckenberg Gesellschaft für Naturforschung, 60325 Frankfurt, Germany
| | - Eleodoro Eduardo Del Valle
- ICiagro Litoral, CONICET, Facultad de Ciencias Agrarias, Universidad Nacional del Litoral, Kreder 2805, Esperanza S3080, Argentina
| |
Collapse
|
3
|
Hrithik MTH, Hong J, Kim Y. Identification of four secretory phospholipase A 2s in a lepidopteran insect, Acrolepiopsis sapporensis, and their functional association with cellular immune responses. Front Endocrinol (Lausanne) 2023; 14:1190834. [PMID: 37424852 PMCID: PMC10328117 DOI: 10.3389/fendo.2023.1190834] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Background Eicosanoids are a group of the oxygenated C20 polyunsaturated fatty acids and play crucial roles in mediating various insect physiological processes. Catalytic activity of phospholipase A2 (PLA2) provides an initial substrate, arachidonic acid (AA), for subsequent eicosanoid biosynthesis. Results This study identified four different secretory PLA2 (As-PLA2A-As-PLA2D) genes encoded in the Asian onion moth, Acrolepiopsis sapporensis. A phylogenetic analysis indicated that As-PLA2A and As-PLA2D are clustered with Group III PLA2s while As-PLA2B and As-PLA2C are clustered with Group XII and Group X PLA2s, respectively. Expression levels of these PLA2 genes increased along with larval development, especially in the fat body. A bacterial immune challenge upregulated the basal expression levels of the four PLA2 genes, which resulted in significant increases of the PLA2 enzyme activity. The enzyme activity was susceptible to a calcium chelator or reducing agent, suggesting Ca2+ dependency and disulfide linkage required for the catalytic activities of the secretory type of PLA2s. In addition, the PLA2 activity was also susceptible to bromophenacyl bromide (BPB), a specific inhibitor to sPLA2, but not to intracellular PLA2 inhibitors. An addition of BPB to the immune challenge significantly prevented hemocyte-spreading behavior of A. sapporensis. BPB treatment also suppressed a cellular immune response measured by hemocyte nodule formation. However, the immunosuppression was significantly rescued by the AA addition. To determine the PLA2(s) responsible for the immunity, individual RNA interference (RNAi) treatments specific to each of the four PLA2s were performed. Injection of gene-specific double-stranded RNAs caused significant reductions in the transcript level in all four PLA2s. In all four PLA2s, the RNAi treatments prevented the cellular immune response even after the immune challenge. Conclusion This study reports four secretory PLA2s encoded in A. sapporensis and their function in mediating cellular immunity.
Collapse
|
4
|
Hrithik MTH, Park Y, Park H, Kim Y. Integrated Biological Control Using a Mixture of Two Entomopathogenic Bacteria, Bacillus thuringiensis and Xenorhabdus hominickii, against Spodoptera exigua and Other Congeners. INSECTS 2022; 13:860. [PMID: 36292808 PMCID: PMC9604179 DOI: 10.3390/insects13100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Insect immunity defends against the virulence of various entomopathogens, including Bacillus thuringiensis (Bt). This study tested a hypothesis that any suppression of immune responses enhances Bt virulence. In a previous study, the entomopathogenic bacterium, Xenorhabdus hominickii (Xh), was shown to produce secondary metabolites to suppress insect immune responses. Indeed, the addition of Xh culture broth (XhE) significantly enhanced the insecticidal activity of Bt against S. exigua. To analyze the virulence enhanced by the addition of Xh metabolites, four bacterial secondary metabolites were individually added to the Bt treatment. Each metabolite significantly enhanced the Bt insecticidal activity, along with significant suppression of the induced immune responses. A bacterial mixture was prepared by adding freeze-dried XhE to Bt spores, and the optimal mixture ratio to kill the insects was determined. The formulated bacterial mixture was applied to S. exigua larvae infesting Welsh onions in a greenhouse and showed enhanced control efficacy compared to Bt alone. The bacterial mixture was also effective in controlling other Spodopteran species such as S. litura and S. frugiperda but not other insect genera or orders. This suggests that Bt+XhE can effectively control Spodoptera-associated pests by suppressing the immune defenses.
Collapse
Affiliation(s)
- Md Tafim Hossain Hrithik
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| | - Youngjin Park
- Animal and Plant Quarantine Agency, 167, Yongjeon-ro, Gimcheon 39660, Korea
| | - Hyemi Park
- Animal and Plant Quarantine Agency, 167, Yongjeon-ro, Gimcheon 39660, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong 36729, Korea
| |
Collapse
|
5
|
Abd-Elgawad MMM. Xenorhabdus spp.: An Overview of the Useful Facets of Mutualistic Bacteria of Entomopathogenic Nematodes. Life (Basel) 2022; 12:1360. [PMID: 36143397 PMCID: PMC9503066 DOI: 10.3390/life12091360] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 12/17/2022] Open
Abstract
Mounting concern over the misuse of chemical pesticides has sparked broad interest for safe and effective alternatives to control plant pests and pathogens. Xenorhabdus bacteria, as pesticidal symbionts of the entomopathogenic nematodes Steinernema species, can contribute to this solution with a treasure trove of insecticidal compounds and an ability to suppress a variety of plant pathogens. As many challenges face sound exploitation of plant-phytonematode interactions, a full useful spectrum of such interactions should address nematicidal activity of Xenorhabdus. Steinernema-Xenorhabdus complex or Xenorhabdus individually should be involved in mechanisms underlying the favorable side of plant-nematode interactions in emerging cropping systems. Using Xenorhabdus bacteria should earnestly be harnessed to control not only phytonematodes, but also other plant pests and pathogens within integrated pest management plans. This review highlights the significance of fitting Xenorhabdus-obtained insecticidal, nematicidal, fungicidal, acaricidal, pharmaceutical, antimicrobial, and toxic compounds into existing, or arising, holistic strategies, for controlling many pests/pathogens. The widespread utilization of Xenorhabdus bacteria, however, has been slow-going, due to costs and some issues with their commercial processing. Yet, advances have been ongoing via further mastering of genome sequencing, discovering more of the beneficial Xenorhabdus species/strains, and their successful experimentations for pest control. Their documented pathogenicity to a broad range of arthropods and pathogens and versatility bode well for useful industrial products. The numerous beneficial traits of Xenorhabdus bacteria can facilitate their integration with other tactics for better pest/disease management programs.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, Agricultural and Biological Research Division, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Natural products from Photorhabdus and Xenorhabdus: mechanisms and impacts. Appl Microbiol Biotechnol 2022; 106:4387-4399. [PMID: 35723692 DOI: 10.1007/s00253-022-12023-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/21/2022]
Abstract
Insects and fungal pathogens pose constant problems to public health and agriculture, especially in resource-limited parts of the world; and the use of chemical pesticides continues to be the main methods for the control of these organisms. Photorhabdus spp. and Xenorhabdus spp., (Fam; Morganellaceae), enteric symbionts of Steinernema, and Heterorhabditis nematodes are naturally found in soil on all continents, except Antarctic, and on many islands throughout the world. These bacteria produce diverse secondary metabolites that have important biological and ecological functions. Secondary metabolites include non-ribosomal peptides, polyketides, and/or hybrid natural products that are synthesized using polyketide synthetase (PRS), non-ribosomal peptide synthetase (NRPS), or similar enzymes and are sources of new pesticide/drug compounds and/or can serve as lead molecules for the design and synthesize of new alternatives that could replace current ones. This review addresses the effects of these bacterial symbionts on insect pests, fungal phytopathogens, and animal pathogens and discusses the substances, mechanisms, and impacts on agriculture and public health. KEY POINTS: • Insects and fungi are a constant menace to agricultural and public health. • Chemical-based control results in resistance development. • Photorhabdus and Xenorhabdus are compelling sources of biopesticides.
Collapse
|
7
|
Abd El-Raheem AM, Abdelazeem Elmasry AM, Elbrense H, Vergara-Pineda S. Photorhabdus and Xenorhabdus as Symbiotic Bacteria for Bio-Control Housefly ( Musca domestica L.). Pak J Biol Sci 2022; 25:586-601. [PMID: 36098165 DOI: 10.3923/pjbs.2022.586.601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
<b>Background and Objective:</b> The housefly poses a threat to the public health of humans and domestic animals since it can carry and transmit pathogens. Despite there are many attempts to control this insect, most of them depend on conventional pesticides. Thus, the current study aimed to evaluate the efficacy of whole-cell suspension, cell-free supernatant and crude cells of the symbiotic bacteria <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., as bio-control agents for housefly stages. <b>Materials and Methods:</b> The <i>Photorhabdus</i> sp. and <i>Xenorhabdus</i> sp., were isolated from the entomopathogenic nematodes, <i>Heterorhabditis indica</i> and <i>Steinernema feltiae</i>, respectively. The phenotypic, as well as the enzymatic characterizations of both bacteria, were determined. In addition, histopathological changes of the alimentary canal of <i>M. domestica</i> adults treated with whole-cell suspensions (at 3×10<sup>8 </sup>cells mL<sup></sup><sup>1</sup>) of both bacteria were carefully examined using transmission electron microscopy. <b>Results:</b> The results showed that both symbiotic bacteria significantly suppressed larvae, pupae and adults of <i>M. domestica</i>, particularly when they were applied as whole-cell suspensions. For example, the highest concentration of whole-cell suspension, cell-free supernatant and crude cells of <i>Photorhabdus</i> sp., induced larval mortalities by 94.7, 64.0 and 45.3%, while those of <i>Xenorhabdus</i> sp., induced larval mortalities by 58.7, 46.7 and 30.7% at 96 hrs, respectively. The results also showed that whole-cell suspensions of both symbiotic bacteria caused severe histopathological changes in the ultrastructure of the treated adults' alimentary canal. <b>Conclusion:</b> Both symbiotic bacteria can be effectively used, particularly the whole-cell suspension, as bio-control agents against the housefly either in the larval or adult stage.
Collapse
|
8
|
Mastore M, Caramella S, Quadroni S, Brivio MF. Drosophila suzukii Susceptibility to the Oral Administration of Bacillus thuringiensis, Xenorhabdus nematophila and Its Secondary Metabolites. INSECTS 2021; 12:insects12070635. [PMID: 34357295 PMCID: PMC8305655 DOI: 10.3390/insects12070635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/07/2021] [Accepted: 07/11/2021] [Indexed: 11/26/2022]
Abstract
Simple Summary In recent decades, climate change and the international fruit trade have favored the movement of allochthonous species such as harmful insects into new geographic areas. The settlement of phytophagous insects and vectors in new areas, where potential predators are often lacking, has increased the use of chemical insecticides for their control. The intensive use of these substances represents a serious problem for ecosystems and human health; a possible alternative to chemical control is biological control, i.e., the use of biological insecticides that are compatible with the environment. The aim of our work was to further improve biological control methods for the management of the dipteran Spotted Wing Drosophila, an insect recently introduced in America and Europe, which can damage thin-skinned fruit crops. The methodologies applied are based on the combined use of different entomopathogens, i.e., bacteria, fungi, nematodes, etc., harmful for insects, with the purpose of increasing their effectiveness. The results obtained show that the combined use of two entomopathogenic bacteria increases both the lethality and rapidity of action. From an application viewpoint, studies like this are essential to identify new methods and bioinsecticides and, once transferred to the field, can be crucial to eliminate or, at least, reduce the use of chemicals. Abstract Drosophila suzukii, Spotted Wing Drosophila (SWD), is a serious economic issue for thin-skinned fruit farmers. The invasion of this dipteran is mainly counteracted by chemical control methods; however, it would be desirable to replace them with biological control. All assays were performed with Bacillus thuringiensis (Bt), Xenorhabdus nematophila (Xn), and Xn secretions, administered orally in single or combination, then larval lethality was assessed at different times. Gut damage caused by Bt and the influence on Xn into the hemocoelic cavity was also evaluated. In addition, the hemolymph cell population was analyzed after treatments. The data obtained show that the combined use of Bt plus Xn secretions on larvae, compared to single administration of bacteria, significantly improved the efficacy and reduced the time of treatments. The results confirm the destructive action of Bt on the gut of SWD larvae, and that Bt-induced alteration promotes the passage of Xn to the hemocoel cavity. Furthermore, hemocytes decrease after bioinsecticides treatments. Our study demonstrates that combining bioinsecticides can improve the efficacy of biocontrol and such combinations should be tested in greenhouse and in field in the near future.
Collapse
Affiliation(s)
- Maristella Mastore
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Sara Caramella
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
| | - Silvia Quadroni
- Laboratory of Ecology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy;
| | - Maurizio Francesco Brivio
- Laboratory of Comparative Immunology and Parasitology, Department of Theoretical and Applied Sciences, University of Insubria, 21100 Varese, Italy; (M.M.); (S.C.)
- Correspondence: ; Tel.: +39-0332-421404
| |
Collapse
|
9
|
Falqueto SA, Pitaluga BF, de Sousa JR, Targanski SK, Campos MG, de Oliveira Mendes TA, da Silva GF, Silva DHS, Soares MA. Bacillus spp. metabolites are effective in eradicating Aedes aegypti (Diptera: Culicidae) larvae with low toxicity to non-target species. J Invertebr Pathol 2020; 179:107525. [PMID: 33383067 DOI: 10.1016/j.jip.2020.107525] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/14/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022]
Abstract
The growing spread of dengue, chikungunya and Zika viruses demand the development of new and environmentally safe control methods for their vector, the mosquito Aedes aegypti. This study aims to find novel larvicidal agents from mutualistic (endophytic and rhizospheric) or edaphic bacteria that have no action against non-target organisms. Eleven out of the 254 bacterial strains tested were able to kill Ae. aegypti larvae. Larvicidal activity did not depend on presence of cells, since culture supernatants or crude lipopeptide extracts (CLEs) killed the larvae. Bacillus safensis BacI67 and Bacillus paranthracis C21 supernatants were the best performing supernatants, displaying the lowest lethal concentrations (LC50 = 31.11 µL/mL and 45.84 µL/mL, respectively). Bacillus velezensis B64a and Bacillus velezensis B15 produced the best performing CLEs (LC50 = 0.11 mg/mL and 0.12 mg/mL, respectively). Mass spectrometry analysis of CLEs detected a mixture of surfactins, iturins, and fengycins. The samples tested were weakly- or non-toxic to mammalian cells (RAW 264.7 macrophages and VERO cells) and non-target organisms (Caenorhabditis elegans, Galleria mellonella, Scenedesmus obliquus, and Tetrahymena pyriformis) - especially B. velezensis B15 CLE. The biosynthetic gene clusters related to secondary metabolism identified by whole genome sequencing of the four best performing bacteria strains revealed clusters for bacteriocin, beta-lactone, lanthipeptide, non-ribosomal peptide synthetases, polyketide synthases (PKS), siderophores, T3PKS, type 1 PKS-like, terpenes, thiopeptides, and trans-AT-PKS. Purification of lipopeptides may clarify the mechanisms by which these extracts kill Ae. aegypti larvae.
Collapse
Affiliation(s)
- Silvia Altoé Falqueto
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Bruno Faria Pitaluga
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Janaína Rosa de Sousa
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Sabrina Ketrin Targanski
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil
| | - Mateus Gandra Campos
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | - Dulce Helena Siqueira Silva
- Centro de Inovação em Biodiversidade e Fármacos, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Marcos Antônio Soares
- Departamento de Botânica e Ecologia, Universidade Federal de Mato Grosso, Av. Fernando Corrêa da Costa 2367, 78060-900 Cuiabá, Brazil.
| |
Collapse
|
10
|
da Silva WJ, Pilz-Júnior HL, Heermann R, da Silva OS. The great potential of entomopathogenic bacteria Xenorhabdus and Photorhabdus for mosquito control: a review. Parasit Vectors 2020; 13:376. [PMID: 32727530 PMCID: PMC7391577 DOI: 10.1186/s13071-020-04236-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
The control of insects of medical importance, such as Aedes aegypti and Aedes albopictus are still the only effective way to prevent the transmission of diseases, such as dengue, chikungunya and Zika. Their control is performed mainly using chemical products; however, they often have low specificity to non-target organisms, including humans. Also, studies have reported resistance to the most commonly used insecticides, such as the organophosphate and pyrethroids. Biological control is an ecological and sustainable method since it has a slow rate of insect resistance development. Bacterial species of the genera Xenorhabdus and Photorhabdus have been the target of several research groups worldwide, aiming at their use in agricultural, pharmaceutical and industrial products. This review highlights articles referring to the use of Xenorhabdus and Photorhabdus for insects and especially for mosquito control proposing future ways for their biotechnological applicability. Approximately 24 species of Xenorhabdus and five species of Photorhabdus have been described to have insecticidal properties. These studies have shown genes that are capable of encoding low molecular weight proteins, secondary toxin complexes and metabolites with insecticide activities, as well as antibiotic, fungicidal and antiparasitic molecules. In addition, several species of Xenorhabdus and Photorhabdus showed insecticidal properties against mosquitoes. Therefore, these biological agents can be used in new control methods, and must be, urgently considered in short term, in studies and applications, especially in mosquito control.![]()
Collapse
Affiliation(s)
- Wellington Junior da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Harry Luiz Pilz-Júnior
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil
| | - Ralf Heermann
- Institut für Molekulare Physiologie, Mikrobiologie und Weinforschung, Johannes-Gutenberg-Universität Mainz, Johann-Joachim-Becher-Weg 13, 55128, Mainz, Germany.
| | - Onilda Santos da Silva
- Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, Porto Alegre, RS, 90050-170, Brazil.
| |
Collapse
|
11
|
Yooyangket T, Muangpat P, Polseela R, Tandhavanant S, Thanwisai A, Vitta A. Identification of entomopathogenic nematodes and symbiotic bacteria from Nam Nao National Park in Thailand and larvicidal activity of symbiotic bacteria against Aedes aegypti and Aedes albopictus. PLoS One 2018; 13:e0195681. [PMID: 29641570 PMCID: PMC5895068 DOI: 10.1371/journal.pone.0195681] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/27/2018] [Indexed: 11/30/2022] Open
Abstract
Entomopathogenic nematodes (EPNs) that are symbiotically associated with Xenorhabdus and Photorhabdus bacteria can kill target insects via direct infection and toxin action. There are limited reports identifying such organisms in the National Park of Thailand. Therefore, the objectives of this study were to identify EPNs and symbiotic bacteria from Nam Nao National Park, Phetchabun Province, Thailand and to evaluate the larvicidal activity of bacteria against Aedes aegypti and Ae. albopictus. A total of 12 EPN isolates belonging to Steinernema and Heterorhabditis were obtained form 940 soil samples between February 2014 and July 2016. EPNs were molecularly identified as S. websteri (10 isolates) and H. baujardi (2 isolates). Symbiotic bacteria were isolated from EPNs and molecularly identified as P. luminescens subsp. akhurstii (13 isolates), X. stockiae (11 isolates), X. vietnamensis (2 isolates) and X. japonica (1 isolate). For the bioassay, bacterial suspensions were evaluated for toxicity against third to early fourth instar larvae of Aedes spp. The larvae of both Aedes species were orally susceptible to symbiotic bacteria. The highest larval mortality of Ae. aegypti was 99% after exposure to X. stockiae (bNN112.3_TH) at 96 h, and the highest mortality of Ae. albopictus was 98% after exposure to P. luminescens subsp. akhurstii (bNN121.4_TH) at 96 h. In contrast to the control groups (Escherichia coli and distilled water), the mortality rate of both mosquito larvae ranged between 0 and 7% at 72 h. Here, we report the first observation of X. vietnamensis in Thailand. Additionally, we report the first observation of P. luminescens subsp. akhurstii associated with H. baujardi in Thailand. X. stockiae has potential to be a biocontrol agent for mosquitoes. This investigation provides a survey of the basic diversity of EPNs and symbiotic bacteria in the National Park of Thailand, and it is a bacterial resource for further studies of bioactive compounds.
Collapse
Affiliation(s)
- Temsiri Yooyangket
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Raxsina Polseela
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
- Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
12
|
Fukruksa C, Yimthin T, Suwannaroj M, Muangpat P, Tandhavanant S, Thanwisai A, Vitta A. Isolation and identification of Xenorhabdus and Photorhabdus bacteria associated with entomopathogenic nematodes and their larvicidal activity against Aedes aegypti. Parasit Vectors 2017; 10:440. [PMID: 28934970 PMCID: PMC5609025 DOI: 10.1186/s13071-017-2383-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 09/17/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Aedes aegypti is a potential vector of West Nile, Japanese encephalitis, chikungunya, dengue and Zika viruses. Alternative control measurements of the vector are needed to overcome the problems of environmental contamination and chemical resistance. Xenorhabdus and Photorhabdus are symbionts in the intestine of entomopathogenic nematodes (EPNs) Steinernema spp. and Heterorhabditis spp. These bacteria are able to produce a broad range of bioactive compounds including antimicrobial, antiparasitic, cytotoxic and insecticidal compounds. The objectives of this study were to identify Xenorhabdus and Photorhabdus isolated from EPNs in upper northern Thailand and to study their larvicidal activity against Ae. aegypti larvae. RESULTS A total of 60 isolates of symbiotic bacteria isolated from EPNs consisted of Xenorhabdus (32 isolates) and Photorhabdus (28 isolates). Based on recA gene sequencing, BLASTN and phylogenetic analysis, 27 isolates of Xenorhabdus were identical and closely related to X. stockiae, 4 isolates were identical to X. miraniensis, and one isolate was identical to X. ehlersii. Twenty-seven isolates of Photorhabdus were closely related to P. luminescens akhurstii and P. luminescens hainanensis, and only one isolate was identical and closely related to P. luminescens laumondii. Xenorhabdus and Photorhabdus were lethal to Ae aegypti larvae. Xenorhabdus ehlersii bMH9.2_TH showed 100% efficiency for killing larvae of both fed and unfed conditions, the highest for control of Ae. aegypti larvae and X. stockiae (bLPA18.4_TH) was likely to be effective in killing Ae. aegypti larvae given the mortality rates above 60% at 72 h and 96 h. CONCLUSIONS The common species in the study area are X. stockiae, P. luminescens akhurstii, and P. luminescens hainanensis. Three symbiotic associations identified included P. luminescens akhurstii-H. gerrardi, P. luminescens hainanensis-H. gerrardi and X. ehlersii-S. Scarabaei which are new observations of importance to our knowledge of the biodiversity of, and relationships between, EPNs and their symbiotic bacteria. Based on the biological assay, X. ehlersii bMH9.2_TH begins to kill Ae. aegypti larvae within 48 h and has the most potential as a pathogen to the larvae. These data indicate that X. ehlersii may be an alternative biological control agent for Ae. aegypti and other mosquitoes.
Collapse
Affiliation(s)
- Chamaiporn Fukruksa
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Thatcha Yimthin
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Manawat Suwannaroj
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Paramaporn Muangpat
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Sarunporn Tandhavanant
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Aunchalee Thanwisai
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand.,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand
| | - Apichat Vitta
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand. .,Centre of Excellence in Medical Biotechnology (CEMB), Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand. .,Center of Excellence for Biodiversity, Faculty of Sciences, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
13
|
Badawy ME, Taktak NE, Awad OM, Elfiki SA, El-Ela NEA. Evaluation of released malathion and spinosad from chitosan/alginate/gelatin capsules against Culex pipiens larvae. Res Rep Trop Med 2016; 7:23-38. [PMID: 30050337 PMCID: PMC6028061 DOI: 10.2147/rrtm.s108881] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Efficacy of spinosad and malathion loaded in eco-friendly biodegradable formulations was evaluated for controlling Culex pipiens larvae. Malathion (organophosphorus larvicide) and spinosad (naturally derived insecticide) were loaded on chitosan/alginate/gelatin capsules. Capsules were characterized by size measurement, scanning electron microscopy, Fourier transform infrared spectroscopy, and water uptake. In vitro release kinetics of the larvicides was studied in the running and stagnant water. Biochemical studies on the larvae treated with technical and formulated insecticides were also demonstrated. The results indicated that the released spinosad was active for a long time up to 48 and 211 days in the running and stagnant water, respectively. However, the capsules loaded with malathion showed larvicidal activity for 20 and 27 days in the running and stagnant water, respectively. Technical and formulated malathion and spinosad had an inhibition effect on acetylcholinesterase, carboxylesterase, and glutathione S-transferase. The results proved that the prepared capsules consisting of biodegradable polymers containing larvicides could be effective as controlled-release formulation against C. pipiens larvae for a long period.
Collapse
Affiliation(s)
- Mohamed Ei Badawy
- Department of Pesticide Chemistry and Technology, Faculty of Agriculture
| | - Nehad Em Taktak
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Osama M Awad
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Souraya A Elfiki
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Nadia E Abou El-Ela
- Department of Tropical Health, High Institute of Public Health, Alexandria University, Alexandria, Egypt
| |
Collapse
|