1
|
Lin S, Head G, Price P, Niu Y, Huang F. Relative fitness of susceptible and Cry1A.105/Cry2Ab2-single-/dual-protein-resistant Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) on non-Bt diet and a diet containing a low concentration of two proteins. INSECT SCIENCE 2023; 30:398-410. [PMID: 35670378 DOI: 10.1111/1744-7917.13087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
Helicoverpa zea (Boddie) is a destructive agricultural pest species that is targeted by both Bacillus thuringiensis (Bt) maize and cotton in the United States. Cry1A.105 and Cry2Ab2 are two Bt proteins expressed in a widely planted maize event MON 89034. In this study, two tests (Test-I and Test-II) were conducted to evaluate the relative fitness of Bt-susceptible and -resistant H. zea on non-Bt diet (Test-I and Test-II) and a diet containing a mix of Cry1A.105 and Cry2Ab2 at a low concentration (Test-II only). Insect populations evaluated in Test-I were two Bt-susceptible strains and three Bt-resistant strains (a single-protein Cry1A.105-, a single-protein Cry2Ab2-, and a dual-protein Cry1A.105/Cry2Ab2-resistant strains). Test-II analyzed the same two susceptible strains, three backcrossed-and-reselected Cry1A.105/Cry2Ab2-single-/dual-protein-resistant strains, and three F1 heterozygous strains. Measurements of life table parameters showed that neither the single- nor dual-protein Cry1A.105/Cry2Ab2 resistance in H. zea was associated with fitness costs under the test conditions. The single Cry protein resistances at a concentration of a mix of Cry1A.105 and Cry2Ab2 that resulted in a zero net reproductive rate for the two susceptible strains were functionally incomplete recessive or codominant, and the dual-protein resistance was completely dominant. The lack of fitness costs could be a factor contributing to the rapid revolution of resistance to the Cry proteins in this species. Data generated from this study should aid our understanding of Cry protein resistance evolution and help in refining IRM programs for H. zea.
Collapse
Affiliation(s)
- Shucong Lin
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Graham Head
- Bayer Crop Science, Chesterfield, Missouri, USA
| | - Paula Price
- Bayer Crop Science, Chesterfield, Missouri, USA
| | - Ying Niu
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| | - Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
2
|
Carrière Y, Tabashnik BE. Fitness Costs and Incomplete Resistance Associated with Delayed Evolution of Practical Resistance to Bt Crops. INSECTS 2023; 14:214. [PMID: 36975899 PMCID: PMC10051223 DOI: 10.3390/insects14030214] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/11/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Insect pests are increasingly evolving practical resistance to insecticidal transgenic crops that produce Bacillus thuringiensis (Bt) proteins. Here, we analyzed data from the literature to evaluate the association between practical resistance to Bt crops and two pest traits: fitness costs and incomplete resistance. Fitness costs are negative effects of resistance alleles on fitness in the absence of Bt toxins. Incomplete resistance entails a lower fitness of resistant individuals on a Bt crop relative to a comparable non-Bt crop. In 66 studies evaluating strains of nine pest species from six countries, costs in resistant strains were lower in cases with practical resistance (14%) than without practical resistance (30%). Costs in F1 progeny from crosses between resistant and susceptible strains did not differ between cases with and without practical resistance. In 24 studies examining seven pest species from four countries, survival on the Bt crop relative to its non-Bt crop counterpart was higher in cases with practical resistance (0.76) than without practical resistance (0.43). Together with previous findings showing that the nonrecessive inheritance of resistance is associated with practical resistance, these results identify a syndrome associated with practical resistance to Bt crops. Further research on this resistance syndrome could help sustain the efficacy of Bt crops.
Collapse
|
3
|
Paddock KJ, Dellamano K, Hibbard BE, Shelby KS. eCry3.1Ab-resistant Western Corn Rootworm Larval Midgut Epithelia Respond Minimally to Bt Intoxication. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:263-267. [PMID: 36539338 DOI: 10.1093/jee/toac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Indexed: 06/17/2023]
Abstract
Insect resistance to toxins derived from Bacillus thuringiensis (Bt) is a major issue in agriculture. Resistance to Bt has been linked to the loss of toxin binding sites within the insect, changes within the gut microbiota, and midgut tissue regeneration. Histopathological documentation of intoxication and resistance to Bt is lacking for rootworms in the genus Diabrotica (Coleoptera: Chrysomelidae), a major target of Bt corn. Here, we document the morphological response of both Bt-resistant and Bt-susceptible larval western corn rootworm, Diabrotica virgifera virgifera LeConte, to intoxication with eCry3.1Ab. Gut lumen structural differences are subtle between the two colonies when feeding on non-Bt corn. However, upon ingestion of Bt-corn roots, susceptible larvae develop symptoms indicative of gut disruption by Bt, whereas resistant larvae incur milder effects. Mild disruption of the peritrophic matrix and gut lumen is accompanied by stem cell proliferation that may lead to midgut tissue regeneration. These results help contextualize the multifaceted nature of Bt-resistance in western corn rootworm for the first time from a histopathological perspective.
Collapse
Affiliation(s)
| | | | - Bruce E Hibbard
- Plant Genetics Research Group, USDA-ARS, Columbia, MO, 65211, USA
| | - Kent S Shelby
- Biocontrol of Insect Research Laboratory, USDA-ARS, Columbia, MO, 65211, USA
| |
Collapse
|
4
|
Paddock KJ, Hibbard BE, Barry J, Sethi A, Mueller AL, Shelby KS, Pereira AE. Restoration of susceptibility following removal of selection for Cry34/35Ab1 resistance documents fitness costs in resistant population of western corn rootworm, Diabrotica virgifera virgifera. PEST MANAGEMENT SCIENCE 2021; 77:2385-2394. [PMID: 33415809 DOI: 10.1002/ps.6266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Management of the corn pest, western corn rootworm (WCR), Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), relies heavily on the planting of transgenic corn expressing toxins produced by the bacterium Bacillus thuringiensis (Bt). This has resulted in the evolution of resistance to all of the four commercially available Bt toxins targeting coleopteran insects. In this study, we evaluated the susceptibility of a Cry34/35Ab1-resistant WCR colony in seedling and diet toxicity assays after removal from selection for six and nine generations. In addition, female fecundity, egg fertility, adult lifespan, larval development, and adult emergence were evaluated in two Cry34/35Ab1-resistant and two susceptible WCR colonies to assess fitness costs. RESULTS Susceptibility to Cry34/35Ab1 was restored in a colony removed from selection after six and nine generations based on diet toxicity assays and comparisons of relative survival, head capsule width, and dry weight in plant assays. Thus, pronounced fitness costs associated with resistance to Cry34/35Ab1 were documented by susceptibility being restored within six generations. In separate studies evaluating specific fitness costs, larval fitness when reared on isoline corn did not differ between resistant and susceptible colonies. However, beetles from susceptible colonies lived longer than resistant beetles which resulted in females from susceptible colonies producing significantly more eggs than resistant colonies, with no differences in egg fertility. CONCLUSIONS The presence of a fitness cost that may contribute to the restoration of susceptibility to Bt has not been documented in other Cry3-resistant WCR populations and could have significant impact on the deployment of resistance management practices. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Kyle J Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Bruce E Hibbard
- USDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO, USA
| | - Julie Barry
- USDA-ARS, Plant Genetics Research Unit, University of Missouri, Columbia, MO, USA
| | | | | | - Kent S Shelby
- USDA-ARS, Biological Control of Insects Laboratory, Columbia, MO, USA
| | - Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
5
|
Paddock KJ, Pereira AE, Finke DL, Ericsson AC, Hibbard BE, Shelby KS. Host resistance to Bacillus thuringiensis is linked to altered bacterial community within a specialist insect herbivore. Mol Ecol 2021; 30:5438-5453. [PMID: 33683750 PMCID: PMC9290792 DOI: 10.1111/mec.15875] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 02/12/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Evolution of resistance to transgenic crops producing toxins from Bacillus thuringiensis (Bt) threatens the sustainability of the technology. Examination of resistance mechanisms has largely focused on characterization of mutations in proteins serving as Bt toxin binding sites. However, insect microbial communities have the potential to provide host resistance to pesticides in a myriad of ways. Previous findings suggest the killing mechanism of Bt relies on enteric bacteria becoming pathogenic in the disrupted gut environment of the insect following Bt intoxication. Thus, here we hypothesized that resistance to Bt would alter the microbiome composition of the insect. Previous studies have manipulated the microbiome of susceptible insects and monitored their response to Bt. In our study, we characterized the associated bacterial communities of Bt‐resistant and ‐susceptible western corn rootworms, a widespread pest of maize in the United States. We found resistant insects harbor a bacterial community that is less rich and distinct from susceptible insects. After feeding on Bt‐expressing maize, susceptible insects exhibited dysbiosis of the associated bacterial community, whereas the community within resistant insects remained relatively unchanged. These results suggest resistance to Bt produces alterations in the microbiome of the western corn rootworm that may contribute to resistance. We further demonstrated that by itself, feeding on Bt toxin‐expressing seedlings caused a shift in the microbiota. This work provides a broader picture of the effect stressors have on microbiome composition, and the potential heritable changes induced as a result of intense selection.
Collapse
Affiliation(s)
- Kyle J Paddock
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Adriano E Pereira
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Deborah L Finke
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA
| | - Aaron C Ericsson
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | - Bruce E Hibbard
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.,USDA-ARS, University of Missouri, Columbia, MO, USA
| | - Kent S Shelby
- Division of Plant Sciences, University of Missouri, Columbia, MO, USA.,USDA-ARS, Columbia, MO, USA
| |
Collapse
|
6
|
Resistance to Bt Maize by Western Corn Rootworm: Effects of Pest Biology, the Pest-Crop Interaction and the Agricultural Landscape on Resistance. INSECTS 2021; 12:insects12020136. [PMID: 33562469 PMCID: PMC7915852 DOI: 10.3390/insects12020136] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/29/2021] [Accepted: 02/01/2021] [Indexed: 12/30/2022]
Abstract
Simple Summary Since the 1990s, an important innovation in the management of agricultural pest insects has been the commercial cultivation of genetically engineered crops that produce insecticidal toxins, which in turn act to protect plants from feeding injury by insects. To date, these transgenic crops, which include cotton, maize and soybean, have produced insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt). Benefits associated with planting of Bt crops include reduced feeding injury from pest insects, decreased yield losses from pests and less harm to the environment. However, the evolution of Bt resistance by insect pests can diminish these benefits. One serious insect pest currently managed with Bt maize is the western corn rootworm. The larval stage of this insect feeds on maize roots and can substantially reduce yield. In some parts of the US Corn Belt, western corn rootworm rapidly adapted to Bt maize, and currently, some populations show resistance to all commercially available Bt traits. This review summarizes the time course of resistance development in the field, key factors contributing to resistance evolution, and steps that biotechnology companies, farmers and regulatory agencies can take to delay additional cases of pest resistance to current and future transgenic technologies. Abstract The western corn rootworm, Diabrotica virgifera virgifera LeConte, is among the most serious pests of maize in the United States. Since 2003, transgenic maize that produces insecticidal toxins from the bacterium Bacillus thuringiensis (Bt) has been used to manage western corn rootworm by killing rootworm larvae, which feed on maize roots. In 2009, the first cases of field-evolved resistance to Bt maize were documented. These cases occurred in Iowa and involved maize that produced Bt toxin Cry3Bb1. Since then, resistance has expanded to include other geographies and additional Bt toxins, with some rootworm populations displaying resistance to all commercially available Bt traits. Factors that contributed to field-evolved resistance likely included non-recessive inheritance of resistance, minimal fitness costs of resistance and limited adult dispersal. Additionally, because maize is the primary agricultural crop on which rootworm larvae can survive, continuous maize cultivation, in particular continuous cultivation of Bt maize, appears to be another key factor facilitating resistance evolution. More diversified management of rootworm larvae, including rotating fields out of maize production and using soil-applied insecticide with non-Bt maize, in addition to planting refuges of non-Bt maize, should help to delay the evolution of resistance to current and future transgenic traits.
Collapse
|
7
|
Huang F. Dominance and fitness costs of insect resistance to genetically modified Bacillus thuringiensis crops. GM CROPS & FOOD 2021; 12:192-211. [PMID: 33380258 PMCID: PMC7781549 DOI: 10.1080/21645698.2020.1852065] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 12/21/2022]
Abstract
Evolution of resistance to genetically modified Bacillus thuringiensis (Bt) crops in pest populations is a major threat to the sustainability of the technology. Incidents of field resistance that have led to control problems of Bt crops or significantly reduced susceptibility of individual Bt proteins in pyramided plants have increased dramatically across the world, especially in recent years. Analysis of globally published data showed that 61.5% and 60.0% of the cases of resistance with major alleles that allowed homozygous resistant genotypes to survival on Bt crops were functionally non-recessive and did not involve fitness costs, respectively. Dominance levels (DFLs) measured on Bt plants ranged from -0.02 to 1.56 with a mean (± sem) of 0.35 ± 0.13 for the 13 cases of single-gene resistance to Bt plants that have been evaluated. Among these, all six cases with field control problems were functionally non-recessive with a mean DFL of 0.63 ± 0.24, which was significantly greater than the DFL (0.11 ± 0.07) of the seven cases without field resistance. In addition, index of fitness costs (IFC) of major resistance was calculated for each case based on the fitness of resistant (R'R') and heterozygous (R'S') genotypes on non-Bt plants divided by the fitness of their susceptible (S'S') counterparts. The estimated IFCs for 15 cases of single-gene resistance were similar for R'R' and R'S', and for the cases with and without field resistance; and the values averaged 1.10 ± 0.12 for R'R' and 1.20 ± 0.18 for R'S'. Limited published data suggest that resistance of insects to dual/multiple-gene Bt crops is likely to be more recessive than the related single-gene resistance, but their IFCs are similar. The quantitative analysis of the global data documents that the prevalence of non-recessive resistance has played an essential role in the widespread evolution of resistance to Bt crops, while the lack of fitness costs is apparently not as critical as the non-recessive resistance. The results suggest that planting of 'high dose' traits is an effective method for Bt crop IRM and more comprehensive management strategies that are also effective for functionally non-recessive resistance should be deployed.
Collapse
Affiliation(s)
- Fangneng Huang
- Department of Entomology, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| |
Collapse
|
8
|
Hiltpold I, Hibbard BE. Indirect Root Defenses Cause Induced Fitness Costs in Bt-Resistant Western Corn Rootworm. JOURNAL OF ECONOMIC ENTOMOLOGY 2018; 111:2349-2358. [PMID: 30085164 DOI: 10.1093/jee/toy220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Indexed: 06/08/2023]
Abstract
Plants genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis Berliner (Bt) have been extensively used to manage the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) in the United States. Evolution of WCR resistance to Bt toxins has forced the consideration of alternative pest management and improved insect resistance management. Entomopathogenic nematodes (EPNs), obligate insect parasites, are attracted toward volatile organic compounds (VOCs) emitted by maize roots after WCR herbivory. The production of VOCs of two types of Bt maize (MON88017 and MIR604) and their near-isolines was evaluated after induction with Bt-susceptible and resistant WCR. The attraction of EPNs toward the Bt hybrids was tested in the laboratory and the field. Bt hybrids emitted VOCs when induced by Bt-resistant insects whereas induction by Bt-susceptible WCR did not elicit a plant response. Survival of Bt-resistant WCR was lower on the hybrid attracting EPNs and similar to the survival of Bt-susceptible WCR without EPNs. This trade-off of Bt-resistance is defined here as an induced fitness cost, and offers a viable tool to management of Bt-resistant WCR.
Collapse
Affiliation(s)
- Ivan Hiltpold
- Department of Entomology and Wildlife Ecology, College of Agriculture and Natural Resources, University of Delaware, Newark, DE
| | - Bruce E Hibbard
- USDA-ARS, Plant Genetic Unit, University of Missouri, Columbia, MO
| |
Collapse
|
9
|
Geisert RW, Hibbard BE. Evaluation of Potential Fitness Costs Associated With eCry3.1Ab Resistance in Diabrotica virgifera virgifera (Coleoptera: Chrysomelidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2016; 109:1853-1858. [PMID: 27151470 DOI: 10.1093/jee/tow095] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 04/10/2016] [Indexed: 06/05/2023]
Abstract
Both an eCry3.1Ab-selected and paired control western corn rootworm, Diabrotica virgifera virgifera LeConte, colony were tested for adult longevity, egg oviposition, egg viability, and larval development in order to evaluate the potential fitness costs associated with eCry3.1Ab resistance. Adult longevity experiments were conducted by pairing virgin males and females together in plastic boxes supplied with food, water, and ovipositional medium and observed for survival time. Eggs were also collected from the ovipositional medium once a week to determine average egg oviposition and egg viability. Larval development time experiments were conducted by infesting seedling assays with 25 neonate larvae and recording larval recovery after several days. Adult longevity, average egg oviposition, and larval development time results indicated a lack of fitness costs associated with eCry3.1Ab resistance in the western corn rootworm. Results of egg viability indicated a fitness advantage for the eCry3.1Ab-selected colony with a significantly higher egg hatch than the control.
Collapse
Affiliation(s)
- Ryan W Geisert
- USDA-ARS, 1503 S. Providence, Research PK, Columbia, MO 65211 ,
| | - Bruce E Hibbard
- USDA-ARS, 205 Curtis Hall, University of Missouri, Columbia, MO 65211
| |
Collapse
|