1
|
Reay-Jones FPF, Buntin GD, Reisig DD, Bridges WC. Longitudinal trials illustrate interactive effects between declining Bt efficacy against Helicoverpa zea (Lepidoptera: Noctuidae) and planting dates of corn. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1901-1912. [PMID: 39041329 DOI: 10.1093/jee/toae160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/06/2024] [Accepted: 07/02/2024] [Indexed: 07/24/2024]
Abstract
Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has evolved resistance to insecticidal toxins from Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) expressed in genetically engineered corn, Zea mays L. This study provides an overview of field trials from Georgia, North Carolina, and South Carolina evaluating Bt and non-Bt corn hybrids from 2009 to 2022 to show changes in susceptibility in H. zea to Bt corn. The reduction in kernel injury relative to a non-Bt hybrid averaged across planting dates generally declined over time for Cry1A.105 + Cry2Ab2 corn. In addition, there was a significant interaction with planting date used as a covariate. The reduction in kernel injury remained above 80% and did not vary with planting date from 2009 to 2014, whereas a significant decline with planting date was found in this reduction from 2015 to 2022. For Cry1Ab + Cry1F corn, the reduction in kernel injury relative to a non-Bt hybrid averaged across planting dates did not vary among years. The reduction in kernel injury significantly declined with planting date from 2012 to 2022. Kernel injury as a proxy for H. zea pressure was greater in late-planted trials in non-Bt corn hybrids. Our study showed that Bt hybrids expressing Cry1A.105 + Cry2Ab2 are now less effective in later planted trials in reducing H. zea injury; however, this was not the case during the earlier years of adoption of corn expressing these 2 toxins when resistance alleles were likely less frequent in H. zea populations. The implications for management of H. zea and for insect resistance management are discussed.
Collapse
Affiliation(s)
- Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC 29506-9727, USA
| | - G David Buntin
- Department of Entomology, University of Georgia, Griffin, GA 30223, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, The Vernon G. James Research and Extension Center, Plymouth, NC 27962, USA
| | - William C Bridges
- Department of Mathematical Sciences, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
2
|
Bryant TB, Greene JK, Reisig D, Reay-Jones FPF. Continued decline in sublethal effects of Bt toxins on Helicoverpa zea (Lepidoptera: Noctuidae) in field corn. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:1876-1883. [PMID: 38984916 DOI: 10.1093/jee/toae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 07/11/2024]
Abstract
The majority of field corn, Zea mays L., in the southeastern United States has been genetically engineered to express insecticidal toxins produced by the soil bacterium, Bacillus thuringiensis (Bt). Field corn is the most important mid-season host for corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), which has developed resistance to all Cry toxins in Bt corn. From 2020 to 2023, corn earworm pupae were collected from early- and late-planted pyramided hybrids expressing Bt toxins and non-Bt near-isolines in North and South Carolina (16 trials). A total of 5,856 pupae were collected across all trials, with 55 and 88% more pupae collected in later-planted trials relative to early plantings in North and South Carolina, respectively. Only 20 pupae were collected from hybrids expressing Cry1F + Cry1Ab + Vip3A20 across all trials. Averaged across trials, Cry1A.105 + Cry2Ab2 hybrids reduced pupal weight by 6 and 9% in North and South Carolina, respectively, relative to the non-Bt near-isoline. Cry1F + Cry1Ab hybrids reduced pupal weight on average by 3 and 8% in North and South Carolina, respectively, relative to the non-Bt near-isoline. The impact of the Bt toxins on pupal weight varied among trials. When combined with data from 2014 to 2019 from previous studies, a significant decline in the percent reduction in pupal weight over time was found in both states and hybrid families. This study demonstrates a continued decline in the sublethal impacts of Bt toxins on corn earworm, emphasizing the importance of insect resistance management practices.
Collapse
Affiliation(s)
- Tim B Bryant
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
| | - Jeremy K Greene
- Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University, Blackville, SC, USA
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, Vernon G. James Research and Extension Center, North Carolina State University, Plymouth, NC, USA
| | - Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC, USA
| |
Collapse
|
3
|
Pezzini DT, Reisig DD, Buntin GD, Del Pozo-Valdivia AI, Gould F, Paula-Moraes SV, Reay-Jones FP. Impact of seed blend and structured maize refuge on Helicoverpa zea (Lepidoptera: Noctuidae) potential phenological resistance development parameters in pupae and adults. PEST MANAGEMENT SCIENCE 2023; 79:3493-3503. [PMID: 37139844 DOI: 10.1002/ps.7529] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Helicoverpa zea, an economic pest in the south-eastern United States, has evolved practical resistance to Bacillus thuringiensis (Bt) Cry toxins in maize and cotton. Insect resistance management (IRM) programs have historically required planting of structured non-Bt maize, but because of its low adoption, the use of seed blends has been considered. To generate knowledge on target pest biology and ecology to help improve IRM strategies, nine field trials were conducted in 2019 and 2020 in Florida, Georgia, North Carolina, and South Carolina to evaluate the impact of Bt (Cry1Ab + Cry1F or Cry1Ab + Cry1F + Vip3A) and non-Bt maize plants in blended and structured refuge treatments on H. zea pupal survival, weight, soil pupation depth, adult flight parameters, and adult time to eclosion. RESULTS From a very large sample size and geography, we found a significant difference in pupal mortality and weight among treatments in seed blends with Vip3A, implying that cross-pollination occurred between Bt and non-Bt maize ears. There was no treatment effect for pupation depth, adult flight distance, and eclosion time. CONCLUSION Results of this study demonstrate the potential impact of different refuge strategies on phenological development and survival of an important pest species of regulatory concern. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniela T Pezzini
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC, USA
| | - G David Buntin
- Department of Entomology, University of Georgia - Griffin Campus, Griffin, GA, USA
| | - Alejandro I Del Pozo-Valdivia
- Department of Entomology, Hampton Roads Agricultural Research and Extension Center, Virginia Polytechnic Institute and State University, Virginia Beach, VA, USA
| | - Fred Gould
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Silvana V Paula-Moraes
- Entomology and Nematology Department, West Florida Research and Education Center, University of Florida, Jay, FL, USA
| | - Francis Pf Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Florence, SC, USA
| |
Collapse
|
4
|
Santiago-González JC, Kerns DL, Head GP, Yang F. A Modified F2 Screen for Estimating Cry1Ac and Cry2Ab Resistance Allele Frequencies in Helicoverpa zea (Lepidoptera: Noctuidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:289-296. [PMID: 36610074 DOI: 10.1093/jee/toac181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Indexed: 05/30/2023]
Abstract
Evaluating the frequency of resistance alleles is important for resistance management and sustainable use of transgenic crops that produce insecticidal proteins from Bacillus thuringiensis. Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) is a major crop pest in the United States that has evolved practical resistance to the crystalline (Cry) proteins in Bt corn and cotton. The standard F2 screen for estimating resistance allele frequency does not work well for H. zea because successful single-pair matings are rare. In this study, we developed and implemented a modified F2 screen for H. zea that generates F1 progeny by crossing three laboratory susceptible female moths with one feral male moth instead of single-pair crosses. During 2019-2020, we used this modified method to establish 192 F2 families from 623 matings between susceptible females and feral males from Arkansas, Louisiana, Mississippi, and Tennessee. From each F2 family, we screened 128 neonates against discriminating concentrations of Cry1Ac and Cry2Ab in diet overlay bioassays. Based on these discriminating concentration bioassays, families were considered positive for resistance if at least five larvae survived to second instar, including at least one to third instar. The percentage of positive families was 92.7% for Cry1Ac and 38.5% for Cry2Ab, which yields an estimated resistance allele frequency (with 95% confidence interval) of 0.722 (0.688-0.764) for Cry1Ac and 0.217 (0.179-0.261) for Cry2Ab. The modified F2 screen developed and implemented here may be useful for future resistance monitoring studies of H. zea and other pests.
Collapse
Affiliation(s)
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
5
|
Reisig D, Buntin GD, Greene JK, Paula-Moraes SV, Reay-Jones F, Roberts P, Smith R, Taylor SV. Magnitude and Extent of Helicoverpa zea Resistance Levels to Cry1Ac and Cry2Ab2 across the Southeastern USA. INSECTS 2023; 14:262. [PMID: 36975947 PMCID: PMC10058025 DOI: 10.3390/insects14030262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
After resistance is first detected, continued resistance monitoring can inform decisions on how to effectively manage resistant populations. We monitored for resistance to Cry1Ac (2018 and 2019) and Cry2Ab2 (2019) from southeastern USA populations of Helicoverpa zea. We collected larvae from various plant hosts, sib-mated the adults, and tested neonates using diet-overlay bioassays and compared them to susceptible populations for resistance estimates. We also compared LC50 values with larval survival, weight and larval inhibition at the highest dose tested using regression, and found that LC50 values were negatively correlated with survival for both proteins. Finally, we compared resistance rations between Cry1Ac and Cry2Ab2 during 2019. Some populations were resistant to Cry1Ac, and most were resistant to CryAb2; Cry1Ac resistance ratios were lower than Cry2Ab2 during 2019. Survival was positively correlated with larval weight inhibition for Cry2Ab. This contrasts with other studies in both the mid-southern and southeastern USA, where resistance to Cry1Ac, Cry1A.105, and Cry2Ab2 increased over time and was found in a majority of populations. This indicates that cotton expressing Cry proteins in the southeastern USA was at variable risk for damage in this region.
Collapse
Affiliation(s)
- Dominic Reisig
- Department of Entomology, The Vernon James Center, North Carolina State University, Plymouth, NC 27962, USA
| | - G. David Buntin
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA
| | - Jeremy K. Greene
- Department of Plant and Environmental Sciences, Clemson University, Blackville, SC 29817, USA
| | | | - Francis Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Blackville, SC 29817, USA
| | - Phillip Roberts
- Department of Entomology, University of Georgia, Tifton, GA 31793, USA
| | - Ron Smith
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849, USA
| | - Sally V. Taylor
- Department of Entomology, Virginia Polytechnic Institute and State University, Suffolk, VA 23437, USA
| |
Collapse
|
6
|
Dillard D, Reisig DD, Reay-Jones FPF. Helicoverpa zea (Lepidoptera: Noctuidae) In-Season and Overwintering Pupation Response to Soil Type. ENVIRONMENTAL ENTOMOLOGY 2023; 52:67-73. [PMID: 36541241 DOI: 10.1093/ee/nvac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Indexed: 06/17/2023]
Abstract
Heliothinae soil pupation is understudied despite the key role this life stage plays in their development. Many Heliothinae are important agricultural pests and understanding the interplay of environment and pupation is important to optimize pest management tactics oriented toward pupae. We studied the impact of three soil types (coarse sand, high organic muck, and fine-textured clay) on Helicoverpa zea (Boddie) in-season and overwintering pupal survivorship, diapause, depth, and weight in at two locations (North and South Carolina). We introduced wild-collected (in-season) and laboratory-reared (over the winter) infestations of H. zea larvae to each of the three soils and later excavated pupae. In-season and over the winter pupal survivorship was lower in fine-textured clay soils than in coarse sand or high organic muck. In addition, pupal depth and weight, in-season and over the winter, varied significantly by soil type. In general, depth was the shallowest, and pupae weight was lower when recovered from fine-textured clay soils. Finally, diapausing characteristics varied significantly by location and year, likely impacted by differing environmental conditions. Our results suggest that fine-textured clay soils negatively impact Heliothinae pupation and may be suppressing populations in areas with these soil types.
Collapse
Affiliation(s)
- DeShae Dillard
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC, 27962, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, 207 Research Station Road, Plymouth, NC, 27962, USA
| | - Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, 2200 Pocket Road, Florence, SC, 29506, USA
| |
Collapse
|
7
|
Santiago-González JC, Kerns DL, Head GP, Yang F. Effective dominance and redundant killing of single- and dual-gene resistant populations of Helicoverpa zea on pyramided Bt corn and cotton. PEST MANAGEMENT SCIENCE 2022; 78:4333-4339. [PMID: 35750998 DOI: 10.1002/ps.7052] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/13/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Pyramided Bacillus thuringiensis (Bt) crops producing multiple Bt proteins with different modes of action are widely planted in the United States. Helicoverpa zea is a major target pest of pyramided Bt crops and has evolved practical resistance to both Cry1 and Cry2 proteins in some regions of U.S. However, little information is available regarding redundant killing and the dominance of resistance for insects possessing multiple resistance on pyramided Bt crops. In this study, we evaluated redundant killing and the dominance of resistance for H. zea strains resistant to Cry1 or Cry1 + Cry2 on pyramided Bt corn and cotton. RESULTS We found that the Cry1-resistant H. zea was incompletely dominant on Cry1Ac + Cry1F cotton. Pyramided crops producing Cry2 and/or Vip3Aa proteins showed a complete redundant killing against the Cry1-resistant H. zea. The Cry1 + Cry2-resistant H. zea displayed incompletely recessive to completely dominant resistance on pyramided Bt crops containing Cry1 and/or Cry2 proteins. The redundant killing was complete for the Cry1 + Cry2-resistant H. zea on pyramided Bt crops producing Vip3Aa protein. CONCLUSION The dominant resistance of Cry1 and Cry2 in H. zea on pyramided Bt crops deviates from the assumption of functionally recessive resistance underlying the high-dose refuge strategy. However, the assumptions of complete redundant killing are achieved for both Cry1- and Cry1 + Cry2-resistant H. zea on pyramided Bt crops. These results suggest that the pyramided strategy could be valuable for increasing the durability of Bt technology for managing H. zea, a pest with inherently low susceptibility against Cry proteins. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX, USA
| |
Collapse
|
8
|
Arends BR, Reisig DD, Gundry S, Greene JK, Kennedy GG, Reay‐Jones FP, Huseth AS. Helicoverpa zea (Lepidoptera: Noctuidae) feeding incidence and survival on Bt maize in relation to maize in the landscape. PEST MANAGEMENT SCIENCE 2022; 78:2309-2315. [PMID: 35233922 PMCID: PMC9310716 DOI: 10.1002/ps.6855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 02/23/2022] [Accepted: 03/02/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Characterizing Helicoverpa zea (Boddie) damage to maize (Zea mays L.) in relation to the spatiotemporal composition of Bt crops is essential to understand how landscape composition affects H. zea abundance. To examine this relationship, paired Bt (expressing Cry1A.105 + Cry2Ab2) and non-Bt maize plots were sampled across North and South Carolina during 2017-2019. Kernel damage and larval exit holes were measured following larval development. To understand how maize abundance surrounding sample sites related to feeding damage and larval development, we quantified maize abundance in a 1 km buffer surrounding the sample site and examined the relationship between local maize abundance and kernel damage and larval exit holes. RESULTS Across the years and locations, damage in Bt maize was widespread but significantly lower than in non-Bt maize, indicating that despite the widespread occurrence of resistance to Cry toxins in maize, Bt maize still provides a measurable reduction in damage. There were negative relationships between kernel injury and ears with larval exit holes in both Bt and non-Bt maize and the proportion of maize in the landscape during the current year. CONCLUSION Despite the widespread occurrence of resistance to Cry toxins in maize, this resistance is incomplete, and on average Bt maize continues to provide a measurable reduction in damage. We interpret the negative relationship between abundance of maize within 1 km of the sample location and maize infestation levels, as measured by kernel damage and larval exit holes, to reflect dispersion of the ovipositing moth population over available maize within the local landscape. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Benjamin R. Arends
- Department of Entomology and Plant PathologyNorth Carolina State UniversityPlymouthNCUSA
| | - Dominic D. Reisig
- Department of Entomology and Plant PathologyNorth Carolina State UniversityPlymouthNCUSA
| | - Shawnee Gundry
- Department of Entomology and Plant PathologyNorth Carolina State UniversityPlymouthNCUSA
| | - Jeremy K. Greene
- Department of Plant and Environmental SciencesClemson University, Edisto Research and Education CenterBlackvilleSCUSA
| | - George G. Kennedy
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
| | - Francis P.F. Reay‐Jones
- Department of Plant and Environmental SciencesClemson University, Pee Dee Research and Education CenterFlorenceSCUSA
| | - Anders S. Huseth
- Department of Entomology and Plant PathologyNorth Carolina State UniversityPlymouthNCUSA
| |
Collapse
|
9
|
Reinders JD, Reinders EE, Robinson EA, Moar WJ, Price PA, Head GP, Meinke LJ. Characterizing the sublethal effects of SmartStax PRO dietary exposure on life history traits of the western corn rootworm, Diabrotica virgifera virgifera LeConte. PLoS One 2022; 17:e0268902. [PMID: 35613094 PMCID: PMC9132300 DOI: 10.1371/journal.pone.0268902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/10/2022] [Indexed: 12/03/2022] Open
Abstract
The western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte, is an economically important pest of field corn (Zea mays L.) across the United States (U.S.) Corn Belt. Repeated use of transgenic hybrids expressing Bacillus thuringiensis (Bt) proteins has selected for field-evolved resistance to all current rootworm-active Bt proteins. The newest product available for WCR management is SmartStax® PRO, a rootworm-active pyramid containing Cry3Bb1, Cry34/35Ab1 [now reclassified as Gpp34Ab1/Tpp35Ab1] and a new mode of action, DvSnf7 dsRNA. Understanding the fitness of adult WCR after dietary exposure to SmartStax® PRO will identify potential impacts on WCR population dynamics and inform efforts to optimize resistance management strategies. Therefore, the objective of the present study was to characterize the effect of SmartStax® PRO dietary exposure on WCR life history traits. Adult WCR were collected during 2018 and 2019 from emergence tents placed over replicated field plots of SmartStax® PRO or non-rootworm Bt corn at a site with a history of rootworm-Bt trait use and suspected resistance to Cry3Bb1 and Cry34/35Ab1. Adult survival was reduced by 97.1–99.7% in SmartStax® PRO plots relative to the non-rootworm Bt corn plots during the study. Individual male/female pairs were fed different diets of ear tissue to simulate lifetime or adult exposure. Life history parameters measured included adult longevity, adult head capsule width, lifetime female egg production, and egg viability. Results indicate that lifetime or adult exposure to SmartStax® PRO significantly reduced adult longevity and lifetime egg production. Larval exposure to SmartStax® PRO significantly reduced WCR adult size. Results from this study collectively suggest that SmartStax® PRO may negatively impact WCR life history traits, which may lead to reduced population growth when deployed in an area with WCR resistance to Bt traits.
Collapse
Affiliation(s)
- Jordan D. Reinders
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
- * E-mail:
| | - Emily E. Reinders
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| | - Emily A. Robinson
- Department of Statistics, University of Nebraska, Lincoln, Nebraska, United States of America
| | - William J. Moar
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Paula A. Price
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Graham P. Head
- CropScience Division, Bayer AG, Chesterfield, Missouri, United States of America
| | - Lance J. Meinke
- Department of Entomology, University of Nebraska, Lincoln, Nebraska, United States of America
| |
Collapse
|
10
|
Santiago González JC, Kerns DL, Head GP, Yang F. Status of Cry1Ac and Cry2Ab2 resistance in field populations of Helicoverpa zea in Texas, USA. INSECT SCIENCE 2022; 29:487-495. [PMID: 34258865 DOI: 10.1111/1744-7917.12947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 06/13/2023]
Abstract
Helicoverpa zea is a major target pest of Bt corn and Bt cotton. Field-evolved resistance of H. zea to Cry1 and Cry2 proteins has been widely reported in the United States. Understanding the frequency of resistance alleles in a target insect is critical for Bt resistance management. Despite multiple cases of practical resistance to Cry proteins having been documented in H. zea, there are no data on the current status of alleles conferring resistance to Cry1Ac and Cry2Ab2 in field populations of this pest. During 2018-2019, a total of 106 F2 families for Cry1Ac and 120 F2 families for Cry2Ab2 were established using mass mating and light trap strategy. We screened 13,568 and 15,360 neonates using a discriminatory dose of Cry1Ac and Cry2Ab2, respectively. The results showed that 93.4% and 35.0% of the F2 families could survive on the discriminatory dose of Cry1Ac and Cry2Ab2, respectively. The estimated resistance allele frequency for Cry1Ac in H. zea ranged from 0.4150 to 0.4975 and for Cry2Ab2 ranged from 0.1097 and 0.1228. These data indicate that the frequency of alleles conferring resistance to Cry1 and Cry2 proteins in H. zea in Texas are high. In addition, our data suggest the resistance to Cry1Ac and Cry2Ab2 in the screened families of H. zea varies from recessive to dominant. The information in this study provides precise estimates of Cry resistance allele frequencies in H. zea and increases our understanding of the risks to the sustainability of Bt crops.
Collapse
Affiliation(s)
| | - David L Kerns
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | | | - Fei Yang
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
11
|
Babu A, Reisig DD, Pes MP, Ranger CM, Chamkasem N, Reding ME. Effects of chlorantraniliprole residual on Helicoverpa zea in Bt and non-Bt cotton. PEST MANAGEMENT SCIENCE 2021; 77:2367-2374. [PMID: 33415822 DOI: 10.1002/ps.6263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Helicoverpa zea is managed with foliar applications of chlorantraniliprole in cotton varieties that do not express the Vip3Aa19 toxin in the US Cotton Belt. Foliar insecticides and Bt could interact to influence larval susceptibility. Therefore, it has been suggested that chlorantraniliprole can be used as a tool for Bt resistance management. We designed field and laboratory studies to test the hypothesis that the interaction of Bt toxin and chlorantraniliprole application would result in lower H. zea larval survival when compared to the individual effect of Bt or chlorantraniliprole alone. We also tested for these interactions over time, since chlorantraniliprole residual has not been studied in cotton. RESULTS Results from two field experiments and two laboratory experiments were similar. We found no interactions with Bt and chlorantraniliprole using data not corrected for natural mortality in untreated plots, indicating that these factors did not interact to influence survival. Moreover, we found that Bt and chlorantraniliprole did not interact to influence larval weight and instar. Chlorantraniliprole had lethal and sublethal effects on H. zea larval growth parameters feeding on cotton leaves up to 22 days after application, the final time period that we tested. Finally, concentration of chlorantraniliprole in the leaf was associated with larval survival for the duration of this study, but not larval growth or instar. CONCLUSION Our findings complement the recommendation to use chlorantraniliprole for managing H. zea in cotton, given its long-residual effects. However, the utility of chlorantraniliprole as a Bt-resistance management tool for H. zea remains unclear. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Arun Babu
- Department of Entomology and Plant Pathology, Vernon G. James Research and Extension Center, North Carolina State University, Plymouth, NC, USA
- Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 413 Biological Sciences, Athens, GA, 30602, USA
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, Vernon G. James Research and Extension Center, North Carolina State University, Plymouth, NC, USA
| | | | - Christopher M Ranger
- Application Technology Research Unit, USDA-Agricultural Research Service, Wooster, OH, USA
| | - Narong Chamkasem
- Southeast Regional Laboratory, U.S. Food and Drug Administration, Atlanta, GA, USA
| | - Michael E Reding
- Application Technology Research Unit, USDA-Agricultural Research Service, Wooster, OH, USA
| |
Collapse
|
12
|
Dively GP, Kuhar TP, Taylor S, Doughty HB, Holmstrom K, Gilrein D, Nault BA, Ingerson-Mahar J, Whalen J, Reisig D, Frank DL, Fleischer SJ, Owens D, Welty C, Reay-Jones FPF, Porter P, Smith JL, Saguez J, Murray S, Wallingford A, Byker H, Jensen B, Burkness E, Hutchison WD, Hamby KA. Sweet Corn Sentinel Monitoring for Lepidopteran Field-Evolved Resistance to Bt Toxins. JOURNAL OF ECONOMIC ENTOMOLOGY 2021; 114:307-319. [PMID: 33274391 DOI: 10.1093/jee/toaa264] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 06/12/2023]
Abstract
As part of an insect resistance management plan to preserve Bt transgenic technology, annual monitoring of target pests is mandated to detect susceptibility changes to Bt toxins. Currently Helicoverpa zea (Boddie) monitoring involves investigating unexpected injury in Bt crop fields and collecting larvae from non-Bt host plants for laboratory diet bioassays to determine mortality responses to diagnostic concentrations of Bt toxins. To date, this monitoring approach has not detected any significant change from the known range of baseline susceptibility to Bt toxins, yet practical field-evolved resistance in H. zea populations and numerous occurrences of unexpected injury occur in Bt crops. In this study, we implemented a network of 73 sentinel sweet corn trials, spanning 16 U.S. states and 4 Canadian provinces, for monitoring changes in H. zea susceptibility to Cry and Vip3A toxins by measuring differences in ear damage and larval infestations between isogenic pairs of non-Bt and Bt hybrids over three years. This approach can monitor susceptibility changes and regional differences in other ear-feeding lepidopteran pests. Temporal changes in the field efficacy of each toxin were evidenced by comparing our current results with earlier published studies, including baseline data for each Bt trait when first commercialized. Changes in amount of ear damage showed significant increases in H. zea resistance to Cry toxins and possibly lower susceptibility to Vip3a. Our findings demonstrate that the sentinel plot approach as an in-field screen can effectively monitor phenotypic resistance and document field-evolved resistance in target pest populations, improving resistance monitoring for Bt crops.
Collapse
Affiliation(s)
- G P Dively
- Department of Entomology, University of Maryland, College Park, MD
| | - T P Kuhar
- Department of Entomology, Virginia Tech, Blacksburg, VA
| | - S Taylor
- Department of Entomology, Virginia Tech, Suffolk, VA
| | - H B Doughty
- Virginia Tech ESAREC/Entomology, Painter, VA
| | | | - D Gilrein
- LIHREC, Cornell University, Riverhead, NY
| | - B A Nault
- Department of Entomology, Cornell AgriTech, Geneva, NY
| | | | - J Whalen
- Private IPM Consultant, Millington, MD
| | - D Reisig
- Department of Entomology and Plant Pathology, NC State University, Plymouth, NC
| | | | - S J Fleischer
- Department of Entomology, Penn State University, University Park, PA
| | - David Owens
- University of Delaware Cooperative Extension, Carvel REC, Georgetown, DE
| | - C Welty
- Rothenbuhler Lab, Ohio State University, Columbus, OH
| | - F P F Reay-Jones
- Pee Dee Research and Education Center, Clemson University, Florence, SC
| | - P Porter
- Department of Entomology, Texas A&M University, AgriLife Research and Extension Center, Lubbock, TX
| | - J L Smith
- Field Crop Pest Management, University of Guelph, Ridgetown, Ontario, Canada
| | - J Saguez
- CEROM, 740 Chemin Trudeau, Saint-Mathieu-de-Beloeil, Quebec J3G 0E2, Canada
| | - S Murray
- Perennia Food and Agriculture, Kentville, Nova Scotia, Canada
| | - A Wallingford
- University of New Hampshire Cooperative Extension, Durham, NH
| | - H Byker
- Department of Plant Agriculture, University of Guelph, Winchester, Ontario, Canada
| | - B Jensen
- Department of Entomology, University of Wisconsin, Madison, WI
| | - E Burkness
- Department of Entomology, University of Minnesota, St. Paul, MN
| | - W D Hutchison
- Department of Entomology, University of Minnesota, St. Paul, MN
| | - K A Hamby
- Department of Entomology, University of Maryland, College Park, MD
| |
Collapse
|
13
|
Li G, Feng H, Ji T, Huang J, Tian C. What type of Bt corn is suitable for a region with diverse lepidopteran pests: A laboratory evaluation. GM CROPS & FOOD 2020; 12:115-124. [PMID: 33084486 PMCID: PMC7583484 DOI: 10.1080/21645698.2020.1831728] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Transgenic crops that produce Bacillus thuringiensis (Bt) toxins are effective tools for controlling lepidopteran pests. However, the degree of susceptibility to Bt toxins differs among various pest species due to relatively narrow spectrum and high selectivity of such toxins. Bt corn hybrids for Chinese market were designed to target Asian corn borer Ostrinia furnacalis (Guenée), while their efficacy against other lepidopteran pests are not well defined, such as Conogethes punctiferalis (Guenée), Helicoverpa armigera (Hübner), Agrotis ypsilon (Rottemberg), and Mythimna separata (Walker), which are also important lepidopteran pests on corn in the Huang-Huai-Hai Summer Corn Region of China. To determine what type of Bt corn is suitable for this region, the efficacy of five Bt toxins, i.e., Cry1Ab, Cry1Ac, Cry1F, Cry2Ab, and Vip3A, to these five lepidopteran species was evaluated in laboratory. Both O. furnacalis and C. punctiferalis showed similar high susceptibility to all five Bt toxins. A. ypsilon and M. separate were less sensitive to Cry1Ab and Cry1Ac than the other species. H. armigera, A. ypsilon and M. separate were less sensitive to Cry1F than O. furnacalis and C. punctiferalis. H. armigera was more sensitive to Cry2Ab than other tested species. All five species were equally sensitive to Vip3A, though their LC50s were all relatively higher. These findings suggest that the first generation Bt corn expressing single Cry1 toxin should not be the first choice because of the potential risk of control failure or less efficacy against H. armigera, A. ypsilon or M. separate. The second-generation Bt corn expressing Cry1 and Cry2 toxins, or the third generation Bt corn expressing Cry1, Cry2 and Vip3A toxins might produce better protection of corn in the Huang-Huai-Hai Summer Corn Region of China.
Collapse
Affiliation(s)
- Guoping Li
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Crop Integrated Pest Management in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, Biological Pesticides Engineering Research Center of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences , Zhengzhou, Henan, China
| | - Hongqiang Feng
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Crop Integrated Pest Management in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, Biological Pesticides Engineering Research Center of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences , Zhengzhou, Henan, China
| | - Tingjie Ji
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Crop Integrated Pest Management in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, Biological Pesticides Engineering Research Center of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences , Zhengzhou, Henan, China
| | - Jianrong Huang
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Crop Integrated Pest Management in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, Biological Pesticides Engineering Research Center of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences , Zhengzhou, Henan, China
| | - Caihong Tian
- Henan Key Laboratory of Crop Pest Control, Key Laboratory of Crop Integrated Pest Management in Southern Region of North China, International Joint Research Laboratory for Crop Protection of Henan, Biological Pesticides Engineering Research Center of Henan Province, Institute of Plant Protection, Henan Academy of Agricultural Sciences , Zhengzhou, Henan, China
| |
Collapse
|
14
|
Reay-Jones FPF, Bilbo TR, Reisig DD. Decline in Sublethal Effects of Bt Corn on Corn Earworm (Lepidoptera: Noctuidae) Linked to Increasing Levels of Resistance. JOURNAL OF ECONOMIC ENTOMOLOGY 2020; 113:2241-2249. [PMID: 32740662 DOI: 10.1093/jee/toaa163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Indexed: 06/11/2023]
Abstract
As part of an ongoing longitudinal study in North and South Carolina, this study reports the recovery of Helicoverpa zea (Boddie) pupae in field trials with genetically engineered corn, Zea mays L., hybrids that produce insecticidal toxins from Bacillus thuringiensis (Bt) in 2017-2019. In total, 10,400 corn ears were collected, which led to 3,927 H. zea pupae (2,215 in South Carolina and 1,712 in North Carolina). Late-planted corn led to a 3.39-fold increase in recovery of pupae compared to early-planted corn. Bt corn expressing Cry1F + Cry1Ab and Cry1A.105 + Cry2Ab2 had 1.67-fold and 2.51-fold fewer pupae than non-Bt near-isolines, respectively. Only six pupae were recovered from the hybrid expressing Cry1F + Cry1Ab + Vip3Aa20. Averaged across trials, Bt corn expressing either Cry1A.105 + Cry2Ab2 or Cry1F + Cry1Ab significantly reduced pupal weight compared to non-Bt near-isolines in North and South Carolina. Combining our data with a previous study at the same locations (Bilbo et al. 2018), reduction in pupal weight between Bt and non-Bt near-isolines significantly declined from 2014 to 2019 for Cry1Ab + Cry1F in North and South Carolina. This decline in levels of a sublethal effect of Bt corn expressing Cry1Ab + Cry1F on H. zea at both locations is likely correlated with resistance development.
Collapse
Affiliation(s)
- Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, Florence, SC
| | - Thomas R Bilbo
- Department of Plant and Environmental Sciences, Clemson University, Pee Dee Research and Education Center, Florence, SC
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, the Vernon G. James Research and Extension Center, Plymouth, NC
| |
Collapse
|
15
|
Demographic Performance of Helicoverpa zea Populations on Dual and Triple-Gene Bt Cotton. Toxins (Basel) 2020; 12:toxins12090551. [PMID: 32872277 PMCID: PMC7551585 DOI: 10.3390/toxins12090551] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/10/2020] [Accepted: 08/26/2020] [Indexed: 01/02/2023] Open
Abstract
Insecticidal toxins from Bacillus thuringiensis (Bt) are valuable tools for pest management worldwide, contributing to the management of human disease insect vectors and phytophagous insect pests of agriculture and forestry. Here, we report the effects of dual and triple Bt toxins expressed in transgenic cotton cultivars on the fitness and demographic performance of Helicoverpa zea (Boddie)—a noctuid pest, known as cotton bollworm and corn earworm. Life-history traits were determined for individuals of three field populations from a region where H. zea overwintering is likely. Triple-gene Bt cotton cultivars that express Cry and Vip3Aa toxins killed 100% of the larvae in all populations tested. In contrast, dual-gene Bt cotton that express Cry1Ac+Cry1F and Cry1Ac+Cry2Ab allowed population growth with the intrinsic rate of population growth (rm) 38% lower than on non-Bt cotton. The insects feeding on Bt cotton plants that express Cry1Ac+Cry2Ab, Cry1Ac+Cry1F, or Cry1Ab+Cry2Ae exhibited reduced larval weight, survival rate, and increased development time. Additionally, fitness parameters varied significantly among the insect populations, even on non-Bt cotton plants, likely because of their different genetic background and/or previous Bt toxin exposure. This is the first report of the comparative fitness of H. zea field populations on dual-gene Bt cotton after the recent reports of field resistance to certain Bt toxins. These results document the population growth rates of H. zea from an agricultural landscape with 100% Bt cotton cultivars. Our results will contribute to the development and validation of resistance management recommendations.
Collapse
|
16
|
Caprio MA, Kurtz R, Catchot A, Kerns D, Reisig D, Gore J, Reay-Jones FPF. The Corn-Cotton Agroecosystem in the Mid-Southern United States: What Insecticidal Event Pyramids Should be Used in Each Crop to Extend Vip3A Durability. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2894-2906. [PMID: 31375824 DOI: 10.1093/jee/toz208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Recent studies suggest that resistance in Helicoverpa zea (Boddie) (Lepidoptera, Noctuidae) to Cry1A(b/c) and Cry2Ab2 toxins from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) has increased and field efficacy is impacted in transgenic corn and cotton expressing these toxins. A third toxin, Vip3A, is available in pyramids expressing two or more Bt toxins in corn hybrids and cotton varieties, but uncertainty exists regarding deployment strategies. During a growing season, H. zea infests corn and cotton, and debate arises over use of Vip3A toxin in corn where H. zea is not an economic pest. We used a three-locus, spatially explicit simulation model to evaluate when using Vip3A in corn might hasten evolution of resistance to Vip3A, with implications in cotton where H. zea is a key pest. When using a conventional refuge in corn and initial resistance allele frequencies of Cry1A and Cry2A were 10%, transforming corn with Vip3A slowed resistance to these toxins and delayed resistance evolution to the three-toxin pyramid as a whole. When Cry resistance allele frequencies exceeded 30%, transforming corn with Vip3A hastened the evolution of resistance to the three-toxin pyramid in cotton. When using a seed blend refuge strategy, resistance was delayed longest when Vip3A was not incorporated into corn and used only in cotton. Simulations of conventional refuges were generally more durable than seed blends, even when 75% of the required refuge was not planted. Extended durability of conventional refuges compared to other models of resistance evolution are discussed as well as causes for unusual survivorship in seed blends.
Collapse
Affiliation(s)
- Michael A Caprio
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS
| | | | - Angus Catchot
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Mississippi State, MS
| | - David Kerns
- Department of Entomology, Texas A&M University, TAMU, College Station, TX
| | - Dominic Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Jeff Gore
- Delta Research & Extension Center, Mississippi State University, Stoneville, MS
| | - Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC
| |
Collapse
|
17
|
Survival and Development of Striacosta albicosta (Smith) (Lepidoptera: Noctuidae) Immature Stages on Dry Beans, non- Bt, Cry1F, and Vip3A Maize. INSECTS 2019; 10:insects10100343. [PMID: 31614931 PMCID: PMC6835940 DOI: 10.3390/insects10100343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/19/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023]
Abstract
Striacosta albicosta is a crop pest that causes economic damage in the United States and Canada. Only maize and dry beans are shown to be suitable hosts, since larval development is incomplete on other hosts. The objective of this study was to describe the developmental parameters of immature stages of S. albicosta feeding on dry beans, non-Bt, Cry1F, and Vip3A maize. For Vip3A, mortality was 100% after 24 h. Larvae feeding on non-Bt maize had the highest larval survival (70.6%) compared to the other hosts. Maize expressing Cry1F had higher survival (31.3%) than dry beans (26.0%). Larvae feeding on dry beans had a significantly faster total development time (74.8 days), compared to 92.5 days for non-Bt and 96.2 days for Cry1F. All larvae developed through seven instars. Pupae from larvae that had fed on non-Bt maize were significantly heavier than pupae from other hosts. An understanding of S. albicosta immature development on various host plants is needed to improve recommendations for effective scouting, treatment timing, and economic thresholds. Differential development can result in an extended adult emergence period, and possibly result in assortative mating between Bt susceptible and resistant populations, which violates the assumption of random mating necessary for current resistance management strategies for Bt maize. Therefore, understanding the impact of host plant and transgenic traits on aspects of pest biology will aid in developing effective integrated pest management and insect resistance management strategies for this pest.
Collapse
|
18
|
Bilbo TR, Reay-Jones FPF, Reisig DD, Greene JK, Turnbull MW. Development, survival, and feeding behavior of Helicoverpa zea (Lepidoptera: Noctuidae) relative to Bt protein concentrations in corn ear tissues. PLoS One 2019; 14:e0221343. [PMID: 31425563 PMCID: PMC6699733 DOI: 10.1371/journal.pone.0221343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 08/05/2019] [Indexed: 12/02/2022] Open
Abstract
The corn earworm, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae), preferentially oviposits and feeds on ears of corn (Zea mays L.) and can be managed using transgenic hybrids that produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). Concentrations of Bt proteins can vary spatially and temporally in plant tissues, creating a heterogeneous environment that can increase the risk of resistance development. We planted small-plot trials of nine Bt and non-Bt corn hybrids in South Carolina in 2016 and 2017 and investigated the development, survival, feeding injury, and feeding behavior in corn ear tissues. ELISA was used to quantify the concentrations of Cry1F and Cry2Ab2 in young silk, old silk, maternal tip tissue, kernels, and husk. Cry1F and Cry2Ab2 significantly varied with silk age and both proteins were generally highest in the silk and tip tissue. Hybrids with pyramided proteins significantly reduced feeding injury to the silk, tip, and kernel ear tissues, which was less apparent with single Bt protein hybrids. The pyramided hybrid expressing Vip3A incurred no injury to either the ear tip or kernels, and only eight 1st instar larvae were collected in the silk of 520 sampled ears. Age of larvae significantly varied among ear tissues but not between hybrids. Depending on hybrid family, mean larval instar in the silk, tip, and kernels was 1st or 2nd, 3rd, and 5th, respectively. Instar-specific feeding penetrance into corn ears increased with age but did not differ between hybrids. We characterized the instar- and tissue-specific feeding behavior of H. zea larvae but did not detect differences in feeding behavior between Bt and non-Bt hybrids. Implications for resistance management strategies such as seed mixtures are discussed.
Collapse
Affiliation(s)
- Tom R. Bilbo
- Clemson University, Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Florence, South Carolina, United States of America
| | - Francis P. F. Reay-Jones
- Clemson University, Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Florence, South Carolina, United States of America
| | - Dominic D. Reisig
- North Carolina State University, Department of Entomology and Plant Pathology, Vernon G. James Research and Extension Center, Plymouth, North Carolina, United States of America
| | - Jeremy K. Greene
- Clemson University, Department of Plant and Environmental Sciences, Edisto Research and Education Center, Blackville, South Carolina, United States of America
| | - Matthew W. Turnbull
- Clemson University, Department of Plant and Environmental Sciences, Department of Biological Sciences, Clemson, South Carolina, United States of America
| |
Collapse
|
19
|
Bilbo TR, Reay-Jones FPF, Reisig DD, Greene JK. Susceptibility of Corn Earworm (Lepidoptera: Noctuidae) to Cry1A.105 and Cry2Ab2 in North and South Carolina. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:1845-1857. [PMID: 30924858 DOI: 10.1093/jee/toz062] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Indexed: 06/09/2023]
Abstract
The corn earworm, Helicoverpa zea (Boddie), is managed in corn and cotton in the United States primarily using transgenic cultivars that produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt). However, increasing reports of resistance to one or more Bt proteins threaten the continued efficacy of Bt traits. To better understand the development of resistance of H. zea to Bt corn and cotton in the southeastern United States, we monitored for resistance to Cry1A.105 and Cry2Ab2 among 22 field populations of H. zea collected in non-Bt and Bt corn expressing Cry1A.105 + Cry2Ab2 during 2017 and 2018. Colonies were established in the laboratory and progeny were screened in diet-overlay bioassays to purified Cry1A.105 and Cry2Ab2 proteins. Compared with two susceptible laboratory colonies, all 14 field colonies tested with Cry1A.105 were highly resistant, with resistance ratios (RRs) ranging from 13.5 to >4,000. For Cry2Ab2, 19 colonies were tested and RRs ranged from 0.26 to 33.7. Field populations were significantly more susceptible to Cry2Ab2 than Cry1A.105. We documented variability in F0 and F1 pupal weight and developmental rates of natural populations of H. zea, but observed no significant correlation with susceptibility to either Cry1A.105 or Cry2Ab2. Our results expand on the recent reports of H. zea resistance to Cry1A and Cry2A proteins and will aid in the design and deployment of future pyramided crops in the United States.
Collapse
Affiliation(s)
- Tom R Bilbo
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC
| | - Francis P F Reay-Jones
- Department of Plant and Environmental Sciences, Pee Dee Research and Education Center, Clemson University, Florence, SC
| | - Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, the Vernon G. James Research and Extension Center, Plymouth, NC
| | - Jeremy K Greene
- Department of Plant and Environmental Sciences, Edisto Research and Education Center, Clemson University, Blackville, SC
| |
Collapse
|
20
|
Yang F, González JCS, Williams J, Cook DC, Gilreath RT, Kerns ADL. Occurrence and Ear Damage of Helicoverpa zea on Transgenic Bacillus thuringiensis Maize in the Field in Texas, U.S. and Its Susceptibility to Vip3A Protein. Toxins (Basel) 2019; 11:toxins11020102. [PMID: 30744120 PMCID: PMC6416581 DOI: 10.3390/toxins11020102] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/05/2019] [Accepted: 02/07/2019] [Indexed: 01/04/2023] Open
Abstract
The corn earworm, Helicoverpa zea (Boddie), is a major pest of Bacillus thuringiensis (Bt) maize and cotton in the U.S. Reduced efficacy of Bt plants expressing Cry1 and Cry2 against H. zea has been reported in some areas of the U.S. In this study, we evaluated the occurrence and ear damage of H. zea on transgenic Bt maize expressing Cry proteins or a combination of Vip3A and Cry proteins in the field in Texas in 2018. We found that the occurrence of H. zea larvae and the viable kernel damage area on the ear were not different between non-Bt maize and Bt maize expressing Cry1A.105+Cry2Ab2 and Cry1Ab+Cry1F proteins. A total of 67.5% of the pyramided Bt maize expressing Cry1Ab+Cry1F+Vip3A was damaged by 2nd–4th instar larvae of H. zea. Diet bioassays showed that the resistance ratio against Vip3Aa51 for H. zea obtained from Cry1Ab+Cry1F+Vip3A maize was 20.4 compared to a field population collected from Cry1F+Cry1A.105+Cry2Ab2 maize. Leaf tissue bioassays showed that 7-day survivorship on WideStrike3 (Cry1F+Cry1Ac+Vip3A) cotton leaves was significantly higher for the H. zea population collected from Cry1Ab+Cry1F+Vip3A maize than for a Bt-susceptible laboratory population. The results generated from this study suggest that H. zea has evolved practical resistance to Cry1 and Cry2 proteins. Therefore, it is crucial to ensure the sustainable use of the Vip3A technology in Bt maize and cotton.
Collapse
Affiliation(s)
- Fei Yang
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| | | | | | - Donald C Cook
- Delta Research and Extension Center, Mississippi State University, Stoneville, MS 38776, USA.
| | - Ryan T Gilreath
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| | - And David L Kerns
- Department of Entomology, Texas A&M University, College Station, TX 77843-2475, USA.
| |
Collapse
|
21
|
Reisig DD, Kurtz R. Bt Resistance Implications for Helicoverpa zea (Lepidoptera: Noctuidae) Insecticide Resistance Management in the United States. ENVIRONMENTAL ENTOMOLOGY 2018; 47:1357-1364. [PMID: 30277503 DOI: 10.1093/ee/nvy142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Both maize and cotton genetically engineered to express Bt toxins are widely planted and important pest management tools in the United States. Recently, Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) has developed resistance to two toxin Bt maize and cotton (Cry1A and Cry2A). Hence, growers are transitioning to three toxin Bt cotton and maize that express both Cry toxins and the Vip3Aa toxin. H. zea susceptibility to Vip3Aa is threatened by 1) a lack of availability of non-Bt refuge crop hosts, including a 1-5% annual decline in the number of non-Bt maize hybrids being marketed; 2) the ineffectiveness of three toxin cultivars to function as pyramids in some regions, with resistance to two out of three toxins in the pyramid; and 3) the lack of a high dose Vip3Aa event in cotton and maize. We propose that data should be collected on current Cry-resistant H. zea in the field to inform future Bt resistance models and that the deployment of Bt toxins and non-Bt refuge crops should be adjusted to favor susceptibility of H. zea to Bt toxins such as Vip3Aa. Finally, maize growers should be incentivized to plant non-Bt structured refuge and have access to hybrids with high-yielding genetic potential at a reasonable price.
Collapse
Affiliation(s)
- Dominic D Reisig
- Department of Entomology and Plant Pathology, North Carolina State University, Vernon G. James Research and Extension Center, Plymouth, NC
| | - Ryan Kurtz
- Agricultural & Environmental Research, Cotton Incorporated, Cary, NC
| |
Collapse
|