1
|
Hoang KL, Salguero-Gómez R, Pike VL, King KC. The impacts of host association and perturbation on symbiont fitness. Symbiosis 2024; 92:439-451. [PMID: 38666134 PMCID: PMC11039428 DOI: 10.1007/s13199-024-00984-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/04/2024] [Indexed: 04/28/2024]
Abstract
Symbiosis can benefit hosts in numerous ways, but less is known about whether interactions with hosts benefit symbionts-the smaller species in the relationship. To determine the fitness impact of host association on symbionts in likely mutualisms, we conducted a meta-analysis across 91 unique host-symbiont pairings under a range of spatial and temporal contexts. Specifically, we assess the consequences to symbiont fitness when in and out of symbiosis, as well as when the symbiosis is under suboptimal or varying environments and biological conditions (e.g., host age). We find that some intracellular symbionts associated with protists tend to have greater fitness when the symbiosis is under stressful conditions. Symbionts of plants and animals did not exhibit this trend, suggesting that symbionts of multicellular hosts are more robust to perturbations. Symbiont fitness also generally increased with host age. Lastly, we show that symbionts able to proliferate in- and outside host cells exhibit greater fitness than those found exclusively inside or outside cells. The ability to grow in multiple locations may thus help symbionts thrive. We discuss these fitness patterns in light of host-driven factors, whereby hosts exert influence over symbionts to suit their own needs. Supplementary Information The online version contains supplementary material available at 10.1007/s13199-024-00984-6.
Collapse
Affiliation(s)
- Kim L. Hoang
- Department of Biology, University of Oxford, Oxford, UK
- Emory University School of Medicine, Atlanta, GA USA
| | | | | | - Kayla C. King
- Department of Biology, University of Oxford, Oxford, UK
- Department of Zoology, University of British Columbia, Vancouver, Canada
- Department of Microbiology & Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
2
|
Yang K, Zhang HY, Wang P, Jin GX, Chu D. Both symbionts and environmental factors contribute to shape the microbiota in a pest insect, Sogatella furcifera. Front Microbiol 2024; 14:1336345. [PMID: 38348307 PMCID: PMC10860895 DOI: 10.3389/fmicb.2023.1336345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/26/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Bacterial symbionts are prevalent in arthropods globally and play a vital role in the fitness and resistance of hosts. While several symbiont infections have been identified in the white-backed planthopper Sogatella furcifera, the impact of environmental factors on the microbiota within S. furcifera remains elusive. Methods In this study, a total of 142 S. furcifera individuals from 18 populations were collected from 14 locations across six countries (China, Thailand, Myanmar, Cambodia, Vietnam, and Laos) analyzed with 2bRAD-M sequencing, to examine the effects of symbionts on the microbiota in the S. furcifera population, as well as the vital effects of environmental factors on the bacterial communities. Results and discussion Based on the results, in S. furcifera, the presence of symbionts Wolbachia and Cardinium negatively influenced the abundance of other bacteria, including Enterobacter, Acinetobacter, and Lysinibacillus, while Wolbachia infection significantly decreased the diversity of the microbial community. Moreover, several environmental factors, including longitude, latitude, temperature, and precipitation, affected the abundance of symbionts and microbiota diversity in S. furcifera. These results collectively highlight the vital role of Wolbachia in S. furcifera microbiota, as well as the intricate effects of environmental factors on the bacterial communities of S. furcifera.
Collapse
Affiliation(s)
- Kun Yang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Hua-Yue Zhang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Peng Wang
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| | - Gui-Xiu Jin
- Linyi Academy of Agricultural Sciences, Linyi, China
| | - Dong Chu
- Shandong Engineering Research Center for Environment-friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Shandong Province Centre for Bioinvasions and Eco-security, Qingdao, China
| |
Collapse
|
3
|
Tan Y, Gong B, Zhang Q, Li C, Weng J, Zhou X, Jin L. Diversity of endosymbionts in camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), estimated by 16S rRNA analysis and their biological implications. Front Microbiol 2023; 14:1124386. [PMID: 37138629 PMCID: PMC10149810 DOI: 10.3389/fmicb.2023.1124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/16/2023] [Indexed: 05/05/2023] Open
Abstract
Camellia spiny whitefly, Aleurocanthus camelliae (Hemiptera: Aleyrodidae), is a major pest in tea, which poses a serious threat to tea production. Similar to many insects, various bacterial symbioses inside A. camelliae may participate in the reproduction, metabolism, and detoxification of the host. However, few reports included research on the microbial composition and influence on A. camelliae growth. We first applied high-throughput sequencing of the V4 region in the 16S rRNA of symbiotic bacteria to study its component and effect on the biological trait of A. camelliae by comparing it with the antibiotic treatment group. The population parameters, survival rate, and fecundity rate of A. camelliae were also analyzed using the age-stage two-sex life table. Our results demonstrated that phylum Proteobacteria (higher than 96.15%) dominated the whole life cycle of A. camelliae. It unveiled the presence of Candidatus Portiera (primary endosymbiont) (67.15-73.33%), Arsenophonus (5.58-22.89%), Wolbachia (4.53-11.58%), Rickettsia (0.75-2.59%), and Pseudomonas (0.99-1.88%) genus. Antibiotic treatment caused a significant decrease in the endosymbiont, which negatively affected the host's biological properties and life process. For example, 1.5% rifampicin treatment caused a longer preadult stage in the offspring generation (55.92 d) compared to the control (49.75d) and a lower survival rate (0.36) than the control (0.60). The decreased intrinsic rate of increase (r), net reproductive rate (R 0), and prolonged mean generation time (T) were signs of all disadvantageous effects associated with symbiotic reduction. Our findings confirmed the composition and richness of symbiotic bacteria in larva and adult of A. camelliae by an Illumina NovaSeq 6000 analysis and their influence on the development of the host by demographic research. Together, the results suggested that symbiotic bacteria play an important role in manipulating the biological development of their hosts, which might help us for developing new pest control agents and technologies for better management of A. camelliae.
Collapse
|
4
|
Plant-mediated rifampicin treatment of Bemisia tabaci disrupts but does not eliminate endosymbionts. Sci Rep 2022; 12:20766. [PMID: 36456664 PMCID: PMC9715664 DOI: 10.1038/s41598-022-24788-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Whiteflies are among the most important global insect pests in agriculture; their sustainable control has proven challenging and new methods are needed. Bacterial symbionts of whiteflies are poorly understood potential target of novel whitefly control methods. Whiteflies harbour an obligatory bacterium, Candidatus Portiera aleyrodidarum, and a diverse set of facultative bacterial endosymbionts. Function of facultative microbial community is poorly understood largely due to the difficulty in their selective elimination without removal of the primary endosymbiont. Since the discovery of secondary endosymbionts, antibiotic rifampicin has emerged as the most used tool for their manipulation. Its effectiveness is however much less clear, with contrasting reports on its effects on the endosymbiont community. The present study builds upon most recent method of rifampicin application in whiteflies and evaluates its ability to eliminate obligatory Portiera and two facultative endosymbionts (Rickettsia and Arsenophnus). Our results show that rifampicin reduces but does not eliminate any of the three endosymbionts. Additionally, rifampicin causes direct negative effect on whiteflies, likely by disrupting mitochondria. Taken together, results signify the end of a rifampicin era in whitefly endosymbiont studies. Finally, we propose refinement of current quantification and data analysis methods which yields additional insights in cellular metabolic scaling.
Collapse
|
5
|
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? JOURNAL OF PEST SCIENCE 2021; 95:543-566. [PMID: 34744550 PMCID: PMC8562023 DOI: 10.1007/s10340-021-01451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/23/2023]
Abstract
Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - Lucien Hoffmann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
6
|
Shan HW, Liu SS. The Costs and Benefits of Two Secondary Symbionts in a Whitefly Host Shape Their Differential Prevalence in the Field. Front Microbiol 2021; 12:739521. [PMID: 34659172 PMCID: PMC8515054 DOI: 10.3389/fmicb.2021.739521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/31/2021] [Indexed: 11/30/2022] Open
Abstract
Insects commonly harbor maternally inherited intracellular symbionts in nature, and the microbial partners often exert influence on host reproduction and fitness to promote their prevalence. Here, we investigated composition of symbionts and their biological effects in the invasive Bemisia tabaci MED species of a whitefly complex. Our field surveys revealed that populations of the MED whitefly, in addition to the primary symbiont Portiera, mainly contain two secondary symbionts Hamiltonella, which is nearly fixed in the host populations, and Cardinium with infection frequencies ranging from 0 to 86%. We isolated and established Cardinium-positive and Cardinium-free whitefly lines with a similar nuclear genetic background from a field population, and compared performance of the two whitefly lines. The infection of Cardinium incurred significant fitness costs on the MED whitefly, including reduction of fecundity and egg viability as well as delay in development. We then selectively removed Hamiltonella from the Cardinium-free whitefly line and compared performance of two whitefly lines, one harboring both Portiera and Hamiltonella and the other harboring only Portiera. While depletion of Hamiltonella had little or only marginal effects on the fecundity, developmental rate, and offspring survival, the Hamiltonella-free whitefly line produced very few female offspring, often reducing the progeny female ratio from about 50% to less than 1%. Our findings indicate that the varying costs and benefits of the association between these two symbionts and the MED whitefly may play an important role in shaping their differential prevalence in the field.
Collapse
Affiliation(s)
- Hong-Wei Shan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China.,Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Smee MR, Raines SA, Ferrari J. Genetic identity and genotype × genotype interactions between symbionts outweigh species level effects in an insect microbiome. THE ISME JOURNAL 2021; 15:2537-2546. [PMID: 33712703 PMCID: PMC8397793 DOI: 10.1038/s41396-021-00943-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/10/2021] [Accepted: 02/18/2021] [Indexed: 02/07/2023]
Abstract
Microbial symbionts often alter the phenotype of their host. Benefits and costs to hosts depend on many factors, including host genotype, symbiont species and genotype, and environmental conditions. Here, we present a study demonstrating genotype-by-genotype (G×G) interactions between multiple species of endosymbionts harboured by an insect, and the first to quantify the relative importance of G×G interactions compared with species interactions in such systems. In the most extensive study to date, we microinjected all possible combinations of five Hamiltonella defensa and five Fukatsuia symbiotica (X-type; PAXS) isolates into the pea aphid, Acyrthosiphon pisum. We applied several ecological challenges: a parasitoid wasp, a fungal pathogen, heat shock, and performance on different host plants. Surprisingly, genetic identity and genotype × genotype interactions explained far more of the phenotypic variation (on average 22% and 31% respectively) than species identity or species interactions (on average 12% and 0.4%, respectively). We determined the costs and benefits associated with co-infection, and how these compared to corresponding single infections. All phenotypes were highly reliant on individual isolates or interactions between isolates of the co-infecting partners. Our findings highlight the importance of exploring the eco-evolutionary consequences of these highly specific interactions in communities of co-inherited species.
Collapse
Affiliation(s)
- Melanie R. Smee
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK ,grid.5386.8000000041936877XPresent Address: Microbiology Department, Cornell University, Ithaca, NY USA
| | - Sally A. Raines
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| | - Julia Ferrari
- grid.5685.e0000 0004 1936 9668Department of Biology, University of York, York, UK
| |
Collapse
|
8
|
Guo H, Wang N, Niu H, Zhao D, Zhang Z. Interaction of Arsenophonus with Wolbachia in Nilaparvata lugens. BMC Ecol Evol 2021; 21:31. [PMID: 33610188 PMCID: PMC7896400 DOI: 10.1186/s12862-021-01766-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/23/2022] Open
Abstract
Background Co-infection of endosymbionts in the same host is ubiquitous, and the interactions of the most common symbiont Wolbachia with other symbionts, including Spiroplasma, in invertebrate organisms have received increasing attention. However, the interactions between Wolbachia and Arsenophonus, another widely distributed symbiont in nature, are poorly understood. We tested the co-infection of Wolbachia and Arsenophonus in different populations of Nilaparvata lugens and investigated whether co-infection affected the population size of the symbionts in their host. Results A significant difference was observed in the co-infection incidence of Wolbachia and Arsenophonus among 5 populations of N. lugens from China, with nearly half of the individuals in the Zhenjiang population harbouring the two symbionts simultaneously, and the rate of occurrence was significantly higher than that of the other 4 populations. The Arsenophonus density in the superinfection line was significantly higher only in the Maanshan population compared with that of the single-infection line. Differences in the density of Wolbachia and Arsenophonus were found in all the tested double-infection lines, and the dominant symbiont species varied with the population only in the Nanjing population, with Arsenophonus the overall dominant symbiont. Conclusions Wolbachia and Arsenophonus could coexist in N. lugens, and the co-infection incidence varied with the geographic populations. Antagonistic interactions were not observed between Arsenophonus and Wolbachia, and the latter was the dominant symbiont in most populations.
Collapse
Affiliation(s)
- Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China.
| | - Na Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No.50, Zhongling street, Nanjing, 210014, Jiangsu, China
| |
Collapse
|
9
|
Zhao D, Zhang Z, Niu H, Guo H. Win by Quantity: a Striking Rickettsia-Bias Symbiont Community Revealed by Seasonal Tracking in the Whitefly Bemisia tabaci. MICROBIAL ECOLOGY 2021; 81:523-534. [PMID: 32968841 DOI: 10.1007/s00248-020-01607-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Maintaining an adaptive seasonality is a basic ecological requisite for cold-blooded organism insects which usually harbor various symbionts. However, how coexisting symbionts coordinate in insects during seasonal progress is still unknown. The whitefly Bemisia tabaci in China harbors the obligate symbiont Portiera that infects each individual, as well as various facultative symbionts. In this study, we investigated whitefly populations in cucumber and cotton fields from May to December 2019, aiming to reveal the fluctuations of symbiont infection frequencies, symbiont coordination in multiple infected individuals, and host plants effects on symbiont infections. The results indicated that the facultative symbionts Hamiltonella (H), Rickettsia (R), and Cardinium (C) exist in field whiteflies, with single (H) and double (HC and HR) infections occurring frequently. Infection frequencies of Hamiltonella (always 100%) and Cardinium (29.50-34.38%) remained steady during seasonal progression. Rickettsia infection frequency in the cucumber whitefly population decreased from 64.47% in summer to 35.29% in winter. Significantly lower Rickettsia infection frequency (15.55%) was identified in cotton whitefly populations and was not subject to seasonal fluctuation. Nevertheless, Rickettsia had a significantly quantitative advantage in the symbiont community of whitefly individuals and populations from both cucumber and cotton field all through the seasons. Moreover, higher Portiera and Hamiltonella densities were found in HC and HR whitefly than in H whitefly, suggesting these symbionts may contribute to producing nutrients for their symbiont partners. These results provide ample cues to further explore the interactions between coexisting symbionts, the coevolutionary relationship between symbionts and host symbiont-induced effects on host plant use.
Collapse
Affiliation(s)
- Dongxiao Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Zhichun Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Hongtao Niu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China
| | - Huifang Guo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, No. 50, Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
10
|
Abstract
Beneficial microorganisms associated with animals derive their nutritional requirements entirely from the animal host, but the impact of these microorganisms on host metabolism is largely unknown. The focus of this study was the experimentally tractable tripartite symbiosis between the pea aphid Acyrthosiphon pisum, its obligate intracellular bacterial symbiont Buchnera, and the facultative bacterium Hamiltonella which is localized primarily to the aphid hemolymph (blood). Metabolome experiments on, first, multiple aphid genotypes that naturally bear or lack Hamiltonella and, second, one aphid genotype from which Hamiltonella was experimentally eliminated revealed no significant effects of Hamiltonella on aphid metabolite profiles, indicating that Hamiltonella does not cause major reconfiguration of host metabolism. However, the titer of just one metabolite, 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), displayed near-significant enrichment in Hamiltonella-positive aphids in both metabolome experiments. AICAR is a by-product of biosynthesis of the essential amino acid histidine in Buchnera and, hence, an index of histidine biosynthetic rates, suggesting that Buchnera-mediated histidine production is elevated in Hamiltonella-bearing aphids. Consistent with this prediction, aphids fed on [13C]histidine yielded a significantly elevated 12C/13C ratio of histidine in Hamiltonella-bearing aphids, indicative of increased (∼25%) histidine synthesized de novo by Buchnera However, in silico analysis predicted an increase of only 0.8% in Buchnera histidine synthesis in Hamiltonella-bearing aphids. We hypothesize that Hamiltonella imposes increased host demand for histidine, possibly for heightened immune-related functions. These results demonstrate that facultative bacteria can alter the dynamics of host metabolic interactions with co-occurring microorganisms, even when the overall metabolic homeostasis of the host is not substantially perturbed.IMPORTANCE Although microbial colonization of the internal tissues of animals generally causes septicemia and death, various animals are persistently associated with benign or beneficial microorganisms in their blood or internal organs. The metabolic consequences of these persistent associations for the animal host are largely unknown. Our research on the facultative bacterium Hamiltonella, localized primarily to the hemolymph of pea aphids, demonstrated that although Hamiltonella imposed no major reconfiguration of the aphid metabolome, it did alter the metabolic relations between the aphid and its obligate intracellular symbiont, Buchnera Specifically, Buchnera produced more histidine in Hamiltonella-positive aphids to support both Hamiltonella demand for histidine and Hamiltonella-induced increase in host demand. This study demonstrates how microorganisms associated with internal tissues of animals can influence specific aspects of metabolic interactions between the animal host and co-occurring microorganisms.
Collapse
|
11
|
Bockoven AA, Bondy EC, Flores MJ, Kelly SE, Ravenscraft AM, Hunter MS. What Goes Up Might Come Down: the Spectacular Spread of an Endosymbiont Is Followed by Its Decline a Decade Later. MICROBIAL ECOLOGY 2020; 79:482-494. [PMID: 31407021 DOI: 10.1007/s00248-019-01417-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 07/24/2019] [Indexed: 06/10/2023]
Abstract
Facultative, intracellular bacterial symbionts of arthropods may dramatically affect host biology and reproduction. The length of these symbiont-host associations may be thousands to millions of years, and while symbiont loss is predicted, there have been very few observations of a decline of symbiont infection rates. In a population of the sweet potato whitefly species (Bemisia tabaci MEAM1) in Arizona, USA, we documented the frequency decline of a strain of Rickettsia in the Rickettsia bellii clade from near-fixation in 2011 to 36% of whiteflies infected in 2017. In previous studies, Rickettsia had been shown to increase from 1 to 97% from 2000 to 2006 and remained at high frequency for at least five years. At that time, Rickettsia infection was associated with both fitness benefits and female bias. In the current study, we established matrilines of whiteflies from the field (2016, Rickettsia infection frequency = 58%) and studied (a) Rickettsia vertical transmission, (b) fitness and sex ratios associated with Rickettsia infection, (c) symbiont titer, and (d) bacterial communities within whiteflies. The vertical transmission rate was high, approximately 98%. Rickettsia infection in the matrilines was not associated with fitness benefits or sex ratio bias and appeared to be slightly costly, as more Rickettsia-infected individuals produced non-hatching eggs. Overall, the titer of Rickettsia in the matrilines was lower in 2016 than in the whiteflies collected in 2011, but the titer distribution appeared bimodal, with high- and low-titer lines, and constancy of the average titer within lines over three generations. We found neither association between Rickettsia titer and fitness benefits or sex ratio bias nor evidence that Rickettsia was replaced by another secondary symbiont. The change in the interaction between symbiont and host in 2016 whiteflies may explain the drop in symbiont frequency we observed.
Collapse
Affiliation(s)
- Alison A Bockoven
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
| | - Elizabeth C Bondy
- Graduate Interdisciplinary Program in Entomology and Insect Science, The University of Arizona, P.O. Box 210036, Tucson, AZ, 85721, USA
| | - Matthew J Flores
- Department of Biological Sciences, Virginia Tech University, Derring Hall Room 2125, 926 West Campus Drive, Mail Code 0406, Blacksburg, VA, 24061, USA
| | - Suzanne E Kelly
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA
| | - Alison M Ravenscraft
- Center for Insect Science, The University of Arizona, P.O. Box 210106, Tucson, AZ, 85721, USA
- Department of Biology, University of Texas at Arlington, 501 S Nedderman Dr, Arlington, TX, 76019, USA
| | - Martha S Hunter
- Department of Entomology, The University of Arizona, 410 Forbes Building, Tucson, AZ, 85721, USA.
| |
Collapse
|