1
|
Tabashnik BE, Fabrick JA, Carrière Y. Global Patterns of Insect Resistance to Transgenic Bt Crops: The First 25 Years. JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:297-309. [PMID: 36610076 DOI: 10.1093/jee/toac183] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Indexed: 05/29/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from the bacterium Bacillus thuringiensis (Bt) have improved pest management and reduced reliance on insecticide sprays. However, evolution of practical resistance by some pests has reduced the efficacy of Bt crops. We analyzed global resistance monitoring data for 24 pest species based on the first 25 yr of cultivation of Bt crops including corn, cotton, soybean, and sugarcane. Each of the 73 cases examined represents the response of one pest species in one country to one Bt toxin produced by one or more Bt crops. The cases of practical resistance rose from 3 in 2005 to 26 in 2020. Practical resistance has been documented in some populations of 11 pest species (nine lepidopterans and two coleopterans), collectively affecting nine widely used crystalline (Cry) Bt toxins in seven countries. Conversely, 30 cases reflect no decrease in susceptibility to Bt crops in populations of 16 pest species in 10 countries. The remaining 17 cases provide early warnings of resistance, which entail genetically based decreases in susceptibility without evidence of reduced field efficacy. The early warnings involve four Cry toxins and the Bt vegetative insecticidal protein Vip3Aa. Factors expected to favor sustained susceptibility include abundant refuges of non-Bt host plants, recessive inheritance of resistance, low resistance allele frequency, fitness costs, incomplete resistance, and redundant killing by multi-toxin Bt crops. Also, sufficiently abundant refuges can overcome some unfavorable conditions for other factors. These insights may help to increase the sustainability of current and future transgenic insecticidal crops.
Collapse
Affiliation(s)
| | - Jeffrey A Fabrick
- USDA ARS, U. S. Arid Land Agricultural Research Center, Maricopa, AZ, USA
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
2
|
Van den Berg J, Greyvenstein B, du Plessis H. Insect resistance management facing African smallholder farmers under climate change. CURRENT OPINION IN INSECT SCIENCE 2022; 50:100894. [PMID: 35247642 DOI: 10.1016/j.cois.2022.100894] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Changes in climatic conditions affect pest populations and ultimately result in increased pest status and yield losses. While pesticide application is usually the first defensive tool used to control pest species that threaten crop production, genetically modified (GM) crops with insecticidal traits (Bt crops) are becoming more common. The indiscriminate and over use of insecticides, and absence of insect resistance management (IRM) strategies ultimately lead to evolution of resistance against these technologies. IRM faces significant challenges in the African context. In this paper we use examples of cotton, maize, cowpea and tomato pests to illustrate their potential to evolve resistance to insecticides and also highlight the importance of IRM strategies, both with regard to the use of pesticides and the cultivation of Bt cotton, Bt maize and Bt cowpea.
Collapse
Affiliation(s)
- Johnnie Van den Berg
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| | - Bianca Greyvenstein
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Hannalene du Plessis
- IPM Program, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| |
Collapse
|
3
|
Botha A, Kunert KJ, Maling’a J, Foyer CH. Defining biotechnological solutions for insect control in sub‐Saharan Africa. Food Energy Secur 2020. [DOI: 10.1002/fes3.191] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna‐Maria Botha
- Department of Genetics Stellenbosch University Stellenbosch South Africa
| | - Karl J. Kunert
- Department of Plant Sciences FABI University of Pretoria Pretoria South Africa
| | - Joyce Maling’a
- Kenya Agriculture and Livestock Organization (KALRO) Food Crops Research Institute Kitale Kenya
| | - Christine H. Foyer
- School of Biosciences College of Life and Environmental Sciences University of Birmingham, Edgbaston Birmingham UK
| |
Collapse
|
4
|
Visser A, Du Plessis H, Erasmus A, Van den Berg J. Plant Abandonment by Busseola fusca (Lepidoptera: Noctuidae) Larvae: Do Bt Toxins Have an Effect? INSECTS 2020; 11:E77. [PMID: 31979149 PMCID: PMC7074050 DOI: 10.3390/insects11020077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 01/09/2023]
Abstract
Busseola fusca (Fuller; Lepidoptera: Noctuidae) is an important pest of maize in Africa and can be effectively controlled by Bt maize. However, the sustainability of this technology is threatened by resistance evolution, which necessitates the implementation of the high-dose/refuge insect resistance management (IRM) strategy. Despite the success of this IRM strategy, it is based on several assumptions about insect-hostplant interactions that are not always valid for different pest species. In this study, the plant abandonment behavior of Cry1Ab-resistant and susceptible B. fusca larvae were evaluated on a non-Bt, single toxin (Cry1Ab), and a pyramid event (Cry1.105 + Cry2Ab2) of maize over a four-day period. The aim was to determine if larvae are more likely to abandon maize plants that contain Bt-toxins than conventional non-Bt plants, and if resistance to the Cry1Ab-toxin affects this behavior. This study found that both Bt-resistant and susceptible B. fusca neonate larvae show feeding avoidance behavior and increased plant abandonment rates when exposed to Bt maize leaf tissue. The implications of these findings for the design of IRM strategies and choice of refuge structures are discussed in the context of Bt maize in Africa.
Collapse
Affiliation(s)
- Andri Visser
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Hannalene Du Plessis
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Annemie Erasmus
- Agricultural Research Council, Grain Crops, Private Bag X1251, Potchefstroom 2520, South Africa;
| | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, IPM program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| |
Collapse
|
5
|
Visser A, Du Plessis H, Erasmus A, van den Berg J. Larval Migration Behaviour of Busseola fusca (Lepidoptera: Noctuidae) on Bt and Non-Bt Maize under Semi-Field and Field Conditions. INSECTS 2019; 11:E16. [PMID: 31877979 PMCID: PMC7022793 DOI: 10.3390/insects11010016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/11/2019] [Accepted: 12/18/2019] [Indexed: 11/25/2022]
Abstract
Busseola fusca (Fuller) (Lepidoptera: Noctuidae) is a destructive pest of maize throughout the African continent. Bt maize is an effective control measure for this pest, however, selection pressure for resistance evolution is high. This necessitates the implementation of insect resistance management (IRM) strategies such as the high-dose/refuge strategy. This IRM strategy relies on the validity of several assumptions about the behaviour of pests during insect-hostplant interactions. In this study, the migration behaviour of B. fusca larvae was evaluated in a semi-field (greenhouse) and field setting. The effect of factors such as different Cry proteins, plant growth stage at infestation, and plant density on the rate and distance of larval migration were investigated over four and five week periods. Migration of the larvae were recorded by using both a leaf feeding damage rating scale and destructive sampling at the end of the trials. Results indicated that B. fusca larval migration success was significantly affected by plant growth stage and plant density-while limited larval migration was recorded in plots inoculated with larvae at a late growth stage (V10), higher plant density facilitated increased interplant migration. The results also suggest that B. fusca larvae do not migrate extensively (rarely further than two plants from the natal plant) and that larval mortality is high. Implications for IRM strategies are discussed.
Collapse
Affiliation(s)
- Andri Visser
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Hannalene Du Plessis
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| | - Annemie Erasmus
- Agricultural Research Council, Grain Crops, Private Bag X1251, Potchefstroom 2520, South Africa;
| | - Johnnie van den Berg
- Unit for Environmental Sciences and Management, IPM Program, North-West University, Potchefstroom 2520, South Africa; (A.V.); (H.D.P.)
| |
Collapse
|
6
|
Erasmus R, Pieters R, Du Plessis H, Hilbeck A, Trtikova M, Erasmus A, Van den Berg J. Introgression of a cry1Ab transgene into open pollinated maize and its effect on Cry protein concentration and target pest survival. PLoS One 2019; 14:e0226476. [PMID: 31841532 PMCID: PMC6914330 DOI: 10.1371/journal.pone.0226476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 11/27/2019] [Indexed: 11/30/2022] Open
Abstract
In Africa, the target pests of genetically modified Bt maize are lepidopteran stem borers, notably Busseola fusca (Lepidoptera: Noctuidae). Gene flow between Bt maize hybrids and open pollinated varieties (OPVs) that do not contain the Bt trait is highly likely in areas where both types of maize are cultivated. Consequently, introgression of the cry1Ab transgene into local OPVs will result in unknown patterns of Cry1Ab protein expression in plants during follow-up seasons when recycled seed of OPVs is planted. Too low concentrations of Cry protein in such plants may result in selection for resistant alleles and accelerate resistance evolution. The aim of this study was to determine the effects of introgression of the cry1Ab transgene into an OPV, on Cry protein concentration levels and pest survival. Bt transgene introgression was done by crossing a transgenic donor hybrid containing the cry1Ab gene with a non-Bt OPV as well as with a non-Bt near-isogenic hybrid. F1 and F2 crosses as well as back crosses were done yielding 11 genotypes (treatments). Cry1Ab protein concentrations in leaf tissue of these crosses were determined by means of ELISAs. All crosses that contained the transgene had similar or higher Cry1Ab concentrations when compared to the Bt parental hybrid, except for the Bt x OPV F1-cross that had a significantly lower Cry1Ab concentration. Survival B. fusca larvae were evaluated in assays in which larvae were reared for 14 days on whorl leaf tissue of the different treatments. Larval survival did not differ between any of the maize plant treatments which contained the Bt gene. Results suggest that Bt transgene introgression into OPVs may produce plant progenies that express Cry1Ab protein at sufficient concentrations, at last up to the F2 seed, to control B. fusca larvae. Resistance evolution is however not only influenced by the frequency of pest individuals that survive exposure to the Cry proteins but also by factors such as genetics of the pest and recipient OPV, pest biology and migration behaviour.
Collapse
Affiliation(s)
- Reynardt Erasmus
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hannalene Du Plessis
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | | | - Miluse Trtikova
- ETH Zurich, IBZ, Plant Ecological Genetics, Zurich, Switzerland
| | | | - Johnnie Van den Berg
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
7
|
Tabashnik BE, Carrière Y. Global Patterns of Resistance to Bt Crops Highlighting Pink Bollworm in the United States, China, and India. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2513-2523. [PMID: 31254345 DOI: 10.1093/jee/toz173] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Indexed: 05/29/2023]
Abstract
Crops genetically engineered to produce insecticidal proteins from Bacillus thuringiensis (Bt) have advanced pest control, but their benefits have been reduced by evolution of resistance in pests. The global monitoring data reviewed here reveal 19 cases of practical resistance to Bt crops, which is field-evolved resistance that reduces Bt crop efficacy and has practical consequences for pest control. Each case represents the responses of one pest species in one country to one Bt toxin. The results with pink bollworm (Pectinophora gossypiella) and Bt cotton differ strikingly among the world's three leading cotton-producing nations. In the southwestern United States, farmers delayed resistance by planting non-Bt cotton refuges from 1996 to 2005, then cooperated in a program that used Bt cotton, mass releases of sterile moths, and other tactics to eradicate this pest from the region. In China, farmers reversed low levels of pink bollworm resistance to Bt cotton by planting second-generation hybrid seeds from crosses between Bt and non-Bt cotton. This approach yields a refuge of 25% non-Bt cotton plants randomly interspersed within fields of Bt cotton. Farmers adopted this tactic voluntarily and unknowingly, not to manage resistance, but apparently because of its perceived short-term agronomic and economic benefits. In India, where non-Bt cotton refuges have been scarce and pink bollworm resistance to pyramided Bt cotton producing Cry1Ac and Cry2Ab toxins is widespread, integrated pest management emphasizing shortening of the cotton season, destruction of crop residues, and other tactics is now essential.
Collapse
Affiliation(s)
| | - Yves Carrière
- Department of Entomology, University of Arizona, Tucson, AZ
| |
Collapse
|