1
|
Gossett CL, Guyer D, Hein J, Brooks SA. Digital Phenotyping Reveals Phenotype Diversity and Epistasis among White Spotting Alleles in the American Paint Horse. Genes (Basel) 2023; 14:2011. [PMID: 38002953 PMCID: PMC10671537 DOI: 10.3390/genes14112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
White spotting is an iconic feature of the American Paint Horse. The American Paint Horse Association (APHA) is dedicated to recording pedigree and performance of this stock-type breed, while preserving its distinctive coat color and conformation. Here, the depigmented proportion of the coat (% white coat) was measured using digital photograph analysis of 1195 registered American Paint Horses. Genotypes for nine white-spotting polymorphisms commonly found in Paint Horses, and two pigment-producing loci MCIR and ASIP genes, were also provided by the APHA. White-coat percent significantly increased in horses with more white-spotting alleles present, regardless of the number of loci bearing those alleles, likely due to a strong additive genetic effect at each white-spotting locus, as well as an additive epistatic effect among white spotting loci. Paint Horses with a chestnut base coat color (genotype e/e at MC1R) possessed a significantly higher white coat percentage, suggesting confirming an epistatic interaction between pigmentation signaling genes and loci for white spotting. The APHA registry categories of Regular versus Solid Paint-Bred also differed in their median white coat percentage (p < 0.0001), but not in the overall ranges of this phenotype, reenforcing the importance of the regional patterns of the depigmentation in the definition of the desired APHA phenotype. Multi-locus phenotype prediction models for white-coat percentage performed only moderately well, and improvements in the sample size and the number of loci genotyped will likely be needed before such an approach could be used practically by APHA breeders. In the future, models that enable phenotype prediction based on genotypes, and automated phenotype assessment could increase the production of valuable visual traits in the American Paint Horse population and improve the APHA member experience during the registration process.
Collapse
Affiliation(s)
- Chelby Lynn Gossett
- UF Genetics Institute, University of Florida Department of Animal Sciences, Gainesville, FL 32611-0910, USA
| | - Danielle Guyer
- UF Genetics Institute, University of Florida Department of Animal Sciences, Gainesville, FL 32611-0910, USA
| | - Jessica Hein
- American Paint Horse Association, Fort Worth, TX 76161-0023, USA
| | - Samantha A. Brooks
- UF Genetics Institute, University of Florida Department of Animal Sciences, Gainesville, FL 32611-0910, USA
| |
Collapse
|
2
|
Górska A, Drobik-Czwarno W, Górska A, Bryś J. Genetic Determination of the Amount of White Spotting: A Case Study in Siberian Cats. Genes (Basel) 2022; 13:genes13061006. [PMID: 35741768 PMCID: PMC9223243 DOI: 10.3390/genes13061006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/30/2022] [Accepted: 05/31/2022] [Indexed: 12/10/2022] Open
Abstract
The current hypothesis, along with the opinion of the breeders, is that a cat with two copies of the white spotting allele (SS) has white on more than half of its body, while a cat with only one copy (Ss) has white on less than half of its body. The present study was based on the analysis of two large pedigree databases of Siberian cats (23,905 individuals in PawPeds and 21,650 individuals in Felis Polonia database). The distribution of the amount of white spotting in the offspring of cats with different amounts of white was investigated. Significant differences compared to expected distributions were observed. In many cases the amount of white in cats that were supposed to be homozygous was less than 50% of the body, while in many supposedly heterozygous cats a very large amount of white (over 50%) was observed. This phenomenon was also presented on the verified examples of the specific families excluding possible errors in determining the amount of white by the breeder. The collected evidence suggests that there are other factors involved in the inheritance of the amount of white in cats and the current hypothesis should be revised.
Collapse
Affiliation(s)
- Agnieszka Górska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.G.); (J.B.)
- Correspondence:
| | - Wioleta Drobik-Czwarno
- Department of Animal Genetics and Conservation, Institute of Animal Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland;
| | - Agata Górska
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.G.); (J.B.)
| | - Joanna Bryś
- Department of Chemistry, Institute of Food Sciences, Warsaw University of Life Sciences, Nowoursynowska St. 166, 02-787 Warsaw, Poland; (A.G.); (J.B.)
| |
Collapse
|
3
|
Korec E, Hančl M, Bydžovská M, Chalupa O, Korcová J. Inheritance of coat colour in the cane Corso Italiano dog. BMC Genet 2019; 20:24. [PMID: 30832561 PMCID: PMC6398231 DOI: 10.1186/s12863-019-0731-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 02/21/2019] [Indexed: 11/15/2022] Open
Abstract
Background The inheritance of different coat colours in the Cane Corso Italiano dog has not been described thus far. We analysed data from 23,271 dogs and bitches using the Cane Corso Italiano Pedigree Database. We are describing for the first time the coat colour segregation ratios in Cane Corso Italiano offspring arising from crosses between parents of all possible coat colour combinations. Results Segregation ratios that do not follow a Mendelian pattern suggest that additional genes are active in the determination of coat colour. Segregation ratios of offspring produced by parental crossing (male colour A x female colour B) were compared with the ratios of offspring produced by reciprocal crossing (male colour B x female colour A) in all possible coat colour combinations. Most of the segregation ratios were the same, but some segregation ratios in reciprocal crosses differed. This result suggests that at least one gene responsible for coat colour is located on a sex chromosome. The sex ratio was analysed in the offspring of all colour groups. A ratio of 1:1 was not confirmed in 8 colour groups by the chi-square test. Conclusions We described for the first time coat colour segregation ratios in Cane Corso Italiano dogs. Furthermore, we present the hypothesis that at least one gene responsible for coat colour is located on a sex chromosome.
Collapse
Affiliation(s)
- Evžen Korec
- Department of Genetics, ZOO Tábor, Dukelských hrdinů 19, 17000, Prague 7, Czech Republic.
| | - Matyáš Hančl
- Department of Genetics, ZOO Tábor, Dukelských hrdinů 19, 17000, Prague 7, Czech Republic
| | - Marie Bydžovská
- Department of Genetics, ZOO Tábor, Dukelských hrdinů 19, 17000, Prague 7, Czech Republic
| | - Ondřej Chalupa
- Department of Genetics, ZOO Tábor, Dukelských hrdinů 19, 17000, Prague 7, Czech Republic
| | - Jana Korcová
- Department of Genetics, ZOO Tábor, Dukelských hrdinů 19, 17000, Prague 7, Czech Republic
| |
Collapse
|
4
|
Abstract
Although deafness can be acquired throughout an animal's life from a variety of causes, hereditary deafness, especially congenital hereditary deafness, is a significant problem in several species. Extensive reviews exist of the genetics of deafness in humans and mice, but not for deafness in domestic animals. Hereditary deafness in many species and breeds is associated with loci for white pigmentation, where the cochlear pathology is cochleo-saccular. In other cases, there is no pigmentation association and the cochlear pathology is neuroepithelial. Late onset hereditary deafness has recently been identified in dogs and may be present but not yet recognized in other species. Few genes responsible for deafness have been identified in animals, but progress has been made for identifying genes responsible for the associated pigmentation phenotypes. Across species, the genes identified with deafness or white pigmentation patterns include MITF, PMEL, KIT, EDNRB, CDH23, TYR, and TRPM1 in dog, cat, horse, cow, pig, sheep, ferret, mink, camelid, and rabbit. Multiple causative genes are present in some species. Significant work remains in many cases to identify specific chromosomal deafness genes so that DNA testing can be used to identify carriers of the mutated genes and thereby reduce deafness prevalence.
Collapse
Affiliation(s)
- George M. Strain
- Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
5
|
Wong AK, Ruhe AL, Robertson KR, Loew ER, Williams DC, Neff MW. A de novo mutation in KIT causes white spotting in a subpopulation of German Shepherd dogs. Anim Genet 2012; 44:305-10. [PMID: 23134432 DOI: 10.1111/age.12006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2012] [Indexed: 11/30/2022]
Abstract
Although variation in the KIT gene is a common cause of white spotting among domesticated animals, KIT has not been implicated in the diverse white spotting observed in the dog. Here, we show that a loss-of-function mutation in KIT recapitulates the coat color phenotypes observed in other species. A spontaneous white spotting observed in a pedigree of German Shepherd dogs was mapped by linkage analysis to a single locus on CFA13 containing KIT (pairwise LOD = 15). DNA sequence analysis identified a novel 1-bp insertion in the second exon that co-segregated with the phenotype. The expected frameshift and resulting premature stop codons predicted a severely truncated c-Kit receptor with presumably abolished activity. No dogs homozygous for the mutation were recovered from multiple intercrosses (P = 0.01), suggesting the mutation is recessively embryonic lethal. These observations are consistent with the effects of null alleles of KIT in other species.
Collapse
Affiliation(s)
- A K Wong
- Veterinary Genetics Laboratory, University of California, Davis, CA 95616, USA
| | | | | | | | | | | |
Collapse
|
6
|
Anistoroaei R, Markakis MN, Vissenberg K, Christensen K. Exclusion of candidate genes for coat colour phenotypes of the American mink (Neovison vison). Anim Genet 2012; 43:813-6. [PMID: 22497269 DOI: 10.1111/j.1365-2052.2012.02339.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2011] [Indexed: 11/29/2022]
Abstract
In a previous project, we screened the American mink Bacterial Artificial Chromosome library, CHORI-231, for genes potentially involved in various coat colour phenotypes in the American mink. Subsequently, we 454 sequenced the inserts containing these genes and developed microsatellite markers for each of these genes. Here, we describe a lack of association between three different 'roan-type' phenotypes represented by Cross, Stardust and Cinnamon in American mink and six different genes that we considered to be potentially linked to these phenotypes. Thus, c-KIT (HUGO-approved symbol KIT), ATOH-1 (HUGO-approved symbol ATOH1) and POMC were excluded as potential candidates for these three phenotypes. In addition, MITF and SLC24A5 were excluded for Cross and Cinnamon, and KITL (HUGO-approved symbol KITLG) for Cross and Stardust. Although most of these genes have been implicated as the cause of similar phenotypes in other mammals, including horses, pigs, cows, dogs, cats, mice and humans, they do not appear to be responsible for comparable phenotypes found in American mink.
Collapse
Affiliation(s)
- R Anistoroaei
- Division of Animal Genetics and Bioinformatics, Department of Basic Animal and Veterinary Sciences, The Faculty of Life Sciences, University of Copenhagen, Groennegaardsvej 3, Frederiksberg C, Denmark.
| | | | | | | |
Collapse
|
7
|
Abstract
The domestic dog offers a unique opportunity to explore the genetic basis of disease, morphology and behaviour. We share many diseases with our canine companions, including cancer, diabetes and epilepsy, making the dog an ideal model organism for comparative disease genetics. Using newly developed resources, whole-genome association in dog breeds is proving to be exceptionally powerful. Here, we review the different trait-mapping strategies, some key biological findings emerging from recent studies and the implications for human health. We also discuss the development of similar resources for other vertebrate organisms.
Collapse
|
8
|
Abstract
Tremendous progress has been made in identifying genes involved in pigmentation in dogs in the past few years. Comparative genomics has both aided and benefited from these findings. Seven genes that cause specific coat colours and/or patterns in dogs have been identified: melanocortin 1 receptor, tyrosinase related protein 1, agouti signal peptide, melanophilin, SILV (formerly PMEL17), microphthalmia-associated transcription factor and beta-defensin 103. Although not all alleles have been yet identified at each locus, DNA tests are available for many. The identification of these alleles has provided information on interactions in this complex set of genes involved in both pigmentation and neurological development. The review also discusses pleiotropic effects of some coat colour genes as they relate to disease. The alleles found in various breeds have shed light on some potential breed development histories and phylogenetic relationships. The information is of value to dog breeders who have selected for and against specific colours since breed standards and dog showing began in the late 1800s. Because coat colour is such a visible trait, this information will also be a valuable teaching resource.
Collapse
Affiliation(s)
- S M Schmutz
- Department of Animal and Poultry Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK, Canada S7N 5A8.
| | | |
Collapse
|
9
|
Karlsson EK, Baranowska I, Wade CM, Salmon Hillbertz NHC, Zody MC, Anderson N, Biagi TM, Patterson N, Pielberg GR, Kulbokas EJ, Comstock KE, Keller ET, Mesirov JP, von Euler H, Kämpe O, Hedhammar A, Lander ES, Andersson G, Andersson L, Lindblad-Toh K. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 2007; 39:1321-8. [PMID: 17906626 DOI: 10.1038/ng.2007.10] [Citation(s) in RCA: 411] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Accepted: 08/13/2007] [Indexed: 11/08/2022]
Abstract
With several hundred genetic diseases and an advantageous genome structure, dogs are ideal for mapping genes that cause disease. Here we report the development of a genotyping array with approximately 27,000 SNPs and show that genome-wide association mapping of mendelian traits in dog breeds can be achieved with only approximately 20 dogs. Specifically, we map two traits with mendelian inheritance: the major white spotting (S) locus and the hair ridge in Rhodesian ridgebacks. For both traits, we map the loci to discrete regions of <1 Mb. Fine-mapping of the S locus in two breeds refines the localization to a region of approximately 100 kb contained within the pigmentation-related gene MITF. Complete sequencing of the white and solid haplotypes identifies candidate regulatory mutations in the melanocyte-specific promoter of MITF. Our results show that genome-wide association mapping within dog breeds, followed by fine-mapping across multiple breeds, will be highly efficient and generally applicable to trait mapping, providing insights into canine and human health.
Collapse
Affiliation(s)
- Elinor K Karlsson
- Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), 7 Cambridge Center, Cambridge, Massachusetts 02142, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Leegwater PA, van Hagen MA, van Oost BA. Localization of White Spotting Locus in Boxer Dogs on CFA20 by Genome-Wide Linkage Analysis with 1500 SNPs. J Hered 2007; 98:549-52. [PMID: 17548862 DOI: 10.1093/jhered/esm022] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
New techniques allow fast genotyping of large numbers of single-nucleotide polymorphisms (SNPs) of the genome. These techniques are used to map disorders with complex inheritance patterns and require large study groups. Linkage analysis of monogenetic traits exploits close family relationships between relatively small numbers of cases and controls. Linkage studies are typically performed with a set of microsatellite markers spaced at 10 cM. We were interested to test whether SNP typing could be applied in genome-wide linkage analysis because of the speed of the procedure. White spotting in Boxer dogs was chosen as a model because it is a semidominant trait, allowing the assignment of locus genotypes to each phenotyped dog. A set of just more than 1500 SNPs were typed in 5 families with heterozygous parents and offspring that included 11 white, 6 brown, and 19 spotted dogs. Multipoint linkage analysis was performed and a LOD score of 12.1 was obtained on canine chromosome 20. The CFA20 region was the only region with a positive LOD score. The gene MITF, coding for a transcription factor implicated in Waardenburg syndrome in humans, is located in the region close to a SNP that is in apparent linkage disequilibrium with the white spotting locus. Thus, MITF is a likely candidate for involvement in white spotting in boxers. We conclude that SNPs, spaced at an average distance of 1.6 Mb, are highly informative in linkage analysis of monogenic traits and are a powerful alternative to microsatellite markers.
Collapse
Affiliation(s)
- Peter A Leegwater
- Department of Veterinary Medicine of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, PO Box 80154, 3508 TD Utrecht, The Netherlands.
| | | | | |
Collapse
|