1
|
Prajapati MR, Kumar P, Pratap Singh R, Shanker R, Singh J, Kumar Bharti M, Singh R, Verma H, Gangwar LK, Singh Gaurav S, Kapoor N, Prakash S, Dixit R. De novo transcriptome assembly, annotation and SSR mining data of Hellula undalis (Fabr.) (Lepidoptera: Pyralidae), the cabbage webworm. J Genet Eng Biotechnol 2024; 22:100393. [PMID: 39179316 PMCID: PMC11179078 DOI: 10.1016/j.jgeb.2024.100393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/08/2024] [Accepted: 05/20/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND The cabbage webworm, Hellula undalis (Fabricius) (Lepidoptera: Pyralidae), is a significant pest of brassicas and other cruciferous plants in warm regions worldwide. Transcriptome analysis is valuable for investigation of molecular mechanisms underlying the insect development and reproduction. De novo assembly is particularly useful for acquiring complete transcriptome information of insect species when there is no reference genome available. In case of Hellula undalis, only 17 nucleotide records are currently available throughout NCBI nucleotide database. Genes associated with metabolic processes, general development, reproduction, defense and functional genomics were not previously predicted in the Hellula undalis at the genomic level. METHODS & RESULTS To address this issue, we constructed Hellula undalis transcriptome using Illumina NovaSeq6000 technology. Approximately 48 million 150 bp paired-end reads were obtained from sequencing. A total of 30,451 contigs were generated by de novo assembly of sample and were compared with the sequences in the NCBI non-redundant protein database (Nr). In total, 71 % of contigs were matched to known proteins in public databases including Nr, Gene Ontology (GO), and Cluster Orthologous Gene Database (COG), and then, contigs were mapped to 123 via functional annotation against the Kyoto Encyclopedia of Genes and Genomes pathway database (KEGG). In addition, we compared the ortholog gene family of the Hullula undalis, transcriptome to Spodoptera frugiperda, spodotera litura and spodoptera littoralis and found that 391 orthologous gene families are specific to Hullula undalis. A total of 1,913 potential SSRs was discovered in Hullula undalis contigs. CONCLUSIONS This study is the first transcriptome data for Hullula undalis. Additionally, it serves as a valuable resource for identifying target genes and developing effective and environmentally friendly strategies for pest control.
Collapse
Affiliation(s)
- Malyaj R Prajapati
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Pankaj Kumar
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India.
| | - Reetesh Pratap Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Ravi Shanker
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Jitender Singh
- Chaudhary Charan Singh University, Meerut, Uttar Pradesh 250001, India.
| | - Mahesh Kumar Bharti
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rajendra Singh
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Harshit Verma
- College of Veterinary and Animal Sciences, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - L K Gangwar
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | | | - Neelesh Kapoor
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Satya Prakash
- College of Agriculture, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| | - Rekha Dixit
- College of Biotechnology, Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, Uttar Pradesh 250110, India
| |
Collapse
|
2
|
Duan X, Wang K, Su S, Tian R, Li Y, Chen M. De novo transcriptome analysis and microsatellite marker development for population genetic study of a serious insect pest, Rhopalosiphum padi (L.) (Hemiptera: Aphididae). PLoS One 2017; 12:e0172513. [PMID: 28212394 PMCID: PMC5315398 DOI: 10.1371/journal.pone.0172513] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/05/2017] [Indexed: 11/21/2022] Open
Abstract
The bird cherry-oat aphid, Rhopalosiphum padi (L.), is one of the most abundant aphid pests of cereals and has a global distribution. Next-generation sequencing (NGS) is a rapid and efficient method for developing molecular markers. However, transcriptomic and genomic resources of R. padi have not been investigated. In this study, we used transcriptome information obtained by RNA-Seq to develop polymorphic microsatellites for investigating population genetics in this species. The transcriptome of R. padi was sequenced on an Illumina HiSeq 2000 platform. A total of 114.4 million raw reads with a GC content of 40.03% was generated. The raw reads were cleaned and assembled into 29,467 unigenes with an N50 length of 1,580 bp. Using several public databases, 82.47% of these unigenes were annotated. Of the annotated unigenes, 8,022 were assigned to COG pathways, 9,895 were assigned to GO pathways, and 14,586 were mapped to 257 KEGG pathways. A total of 7,936 potential microsatellites were identified in 5,564 unigenes, 60 of which were selected randomly and amplified using specific primer pairs. Fourteen loci were found to be polymorphic in the four R. padi populations. The transcriptomic data presented herein will facilitate gene discovery, gene analyses, and development of molecular markers for future studies of R. padi and other closely related aphid species.
Collapse
Affiliation(s)
- Xinle Duan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China.,College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kang Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ruizheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yuting Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Moura RF, Dawson DA, Nogueira DM. The use of microsatellite markers in Neotropical studies of wild birds: a literature review. AN ACAD BRAS CIENC 2017; 89:145-154. [PMID: 28177053 DOI: 10.1590/0001-3765201620160378] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 11/22/2022] Open
Abstract
Despite extensive habitat fragmentation, the Neotropical region possesses 30% of the world´s bird species. Microsatellites have remained one of the most popular genetic markers and have been used in ecological and conservation studies since the 1990's. We conducted a literature review comparing the number of papers published from January 1990 to July 2015 that used microsatellite markers for studies of wild birds in the Neotropical region, USA and some European countries. We assigned the articles to three categories of studies: population genetics, animal behavior/kinship analysis and the development of species-specific bird microsatellite markers. We also compared the studies in the Neotropics that used heterologous versus species-specific markers and provide a list of heterologous markers of utility in multiple birds. Despite the rich bird fauna in the Neotropics, the number of articles published represents only 5.6% of that published by the USA and selected European countries. Within the Neotropical region, Brazil possessed 60.5% of the total papers published, with the remaining 39.5% shared between five countries. We conclude that the lack of specialized laboratories and resources still represents a limit to microsatellite-based genetic studies of birds within the Neotropical region. To overcome these limitations, we suggest the use of heterologous microsatellite markers as a cost-effective and time-effective tool to assist ecological studies of wild birds.
Collapse
Affiliation(s)
- Renan F Moura
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, BR 465, Km 07, 23890-000 Seropédica, RJ, Brazil
| | - Deborah A Dawson
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, South Yorkshire, S10 2TN, UK
| | - Denise M Nogueira
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro/UFRRJ, BR 465 Km 07, 23890-000 Seropédica, RJ, Brazil
| |
Collapse
|
4
|
Chen X, Li J, Xiao S, Liu X. De novo assembly and characterization of foot transcriptome and microsatellite marker development for Paphia textile. Gene 2015; 576:537-43. [PMID: 26546834 DOI: 10.1016/j.gene.2015.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/18/2015] [Accepted: 11/01/2015] [Indexed: 11/27/2022]
Abstract
Paphia textile is an important, aquaculture bivalve clam species distributed mainly in China, Philippines, and Malaysia. Recent studies of P. textile have focused mainly on artificial breeding and nutrition analysis, and the transcriptome and genome of P. textile have rarely been reported. In this work, the transcriptome of P. textile foot tissue was sequenced on an Illumina HiSeq™ 2000 platform. A total of 20,219,795 reads were generated, resulting in 4.08 Gb of raw data. The raw reads were cleaned and assembled into 54,852 unigenes with an N50 length of 829 bp. Of these unigenes, 38.92% were successfully annotated based on their matches to sequences in seven public databases. Among the annotated unigenes, 14,571 were assigned Gene Ontology terms, 5448 were classified to Clusters of Orthologous Groups categories, and 6738 were mapped to 228 pathways in the Kyoto Encyclopedia of Genes and Genomes database. For functional marker development, 5605 candidate simple sequence repeats were identified in the transcriptome and 80 primer pairs were selected randomly and amplified in a wild population of P. textile. A total of 36 loci that exhibited obvious repeat length polymorphisms were detected. The transcriptomic data and microsatellite markers will provide valuable resources for future functional gene analyses, genetic map construction, and quantitative trait loci mapping in P. textile.
Collapse
Affiliation(s)
- Xiaoming Chen
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Jiakai Li
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Shijun Xiao
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China
| | - Xiande Liu
- Key Laboratory of Mariculture in the East China Sea, Ministry of Agriculture of China, Fisheries College, Jimei University, Xiamen 361021, China.
| |
Collapse
|
5
|
Maduna SN, Rossouw C, Roodt-Wilding R, Bester-van der Merwe AE. Microsatellite cross-species amplification and utility in southern African elasmobranchs: A valuable resource for fisheries management and conservation. BMC Res Notes 2014; 7:352. [PMID: 24915745 PMCID: PMC4079218 DOI: 10.1186/1756-0500-7-352] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 06/02/2014] [Indexed: 12/20/2022] Open
Abstract
Background Similarly to the rest of the world, southern Africa’s diverse chondrichthyan fauna is currently experiencing high fishing pressures from direct and non-direct fisheries to satisfy market demands for shark products such as fins and meat. In this study, the development of microsatellite markers through cross-species amplification of primer sets previously developed for closely related species is reported as an alternative approach to de novo marker development. This included the design of four microsatellite multiplex assays and their cross-species utility in genetic diversity analysis of southern African elasmobranchs. As this study forms part of a larger project on the development of genetic resources for commercially important and endemic southern African species, Mustelus mustelus was used as a candidate species for testing these multiplex assays in down-stream applications. Results Thirty five microsatellite primer sets previously developed for five elasmobranch species were selected from literature for testing cross-species amplification in 16 elasmobranch species occurring in southern Africa. Cross-species amplification success rates ranged from 28.6%-71.4%. From the successfully amplified microsatellites, 22 loci were selected and evaluated for levels of polymorphism, and four multiplex assays comprising of the 22 microsatellites were successfully constructed, optimised and characterised in a panel of 87 Mustelus mustelus individuals. A total of 125 alleles were observed across all loci, with the number of alleles ranging from 3–12 alleles. Cross-species amplification of the four optimised multiplex assays was further tested on 11 commercially important and endemic southern African elasmobranch species. Percentage of polymorphism ranged from 31.8%-95.5% in these species with polymorphic information content decreasing exponentially with evolutionary distance from the source species. Conclusions Cross-species amplification of the 35 microsatellites proved to be a time- and cost-effective approach to marker development in elasmobranchs and enabled the construction of four novel multiplex assays for characterising genetic diversity in a number of southern African elasmobranch species. This study successfully demonstrated the usefulness of these markers in down-stream applications such as genetic diversity assessment and species identification which could potentially aid in a more integrative, multidisciplinary approach to management and conservation of commercially important cosmopolitan and endemic elasmobranch species occurring in southern Africa.
Collapse
|
6
|
Ge C, Sun JT, Cui YN, Hong XY. Rapid development of 36 polymorphic microsatellite markers for Tetranychus truncatus by transferring from Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2013; 61:195-212. [PMID: 23474781 DOI: 10.1007/s10493-013-9684-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Tetranychus truncatus Ehara is a phytophagous spider mite that is now one of the most important pests of agricultural and economic crops in East and Southeast Asia. However, population genetics and other studies of T. truncatus have been impeded by the lack of microsatellite markers, which are expensive and time-consuming to identify. Previous studies indicated a high potential of cross-amplification of microsatellites in Tetranychus species, meaning that the microsatellite flanking sequences are sufficiently homologous among Tetranychus species that the primers for one species may work in another species. Here, we tested 205 primer pairs designed from the whole genome sequence of Tetranychus urticae Koch, a sister species of T. truncatus, for microsatellite markers in three populations of T. truncatus in China (N = 94). About half (102) of these primer pairs yielded the desired PCR products, 36 of which revealed polymorphism in T. truncatus. Each of the 36 markers harbored between 2 and 23 alleles, with a mean polymorphic information content of 0.589 (0.119-0.922 range). The mean observed and expected heterozygosity across loci and the three populations were 0.468 and 0.628, respectively. Of the 36 primer pairs, 22 also worked in Tetranychus piercei, but only a few of them worked in T. ludeni and T. phaselus. Cross-amplification is thus a cost-effective way to develop microsatellite markers, which can be of great value in population genetics studies.
Collapse
Affiliation(s)
- Cheng Ge
- Department of Entomology , Nanjing Agricultural University, Nanjing 210095, Jiangsu, China
| | | | | | | |
Collapse
|
7
|
Gotoh RO, Tamate S, Yokoyama J, Tamate HB, Hanzawa N. Characterization of comparative genome-derived simple sequence repeats for acanthopterygian fishes. Mol Ecol Resour 2013; 13:461-72. [PMID: 23374614 DOI: 10.1111/1755-0998.12070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/12/2012] [Accepted: 12/18/2012] [Indexed: 11/30/2022]
Abstract
Simple sequence repeats (SSRs) have become one of the most popular molecular markers for population genetic studies. The application of SSR markers has often been limited to source species because SSR loci are too labile to be maintained in even closely related species. However, a few extremely conserved SSR loci have been reported. Here, we tested for the presence of conserved SSR loci in acanthopterygian fishes, which include over 14 000 species, by comparing the genome sequences of four acanthopterygian fishes. We also examined the comparative genome-derived SSRs (CG-SSRs) for their transferability across acanthopterygian fishes and their applicability to population genetic analysis. Forty-six SSR loci with conserved flanking regions were detected and examined for their transferability among seven nonacanthopterygian and 27 acanthopterygian fishes. The PCR amplification success rate in nonacanthopterygian fishes was low, ranging from 2.2% to 21.7%, except for Lophius litulon (Lophiiformes; 80.4%). Conversely, the rate in most acanthopterygian fishes exceeded 70.0%. Sequencing of these 46 loci revealed the presence of SSRs suitable for scoring while fragment analysis of 20 loci revealed polymorphisms in most of the acanthopterygian fishes. Population genetic analysis of Cottus pollux (Scorpaeniformes) and Sphaeramia orbicularis (Perciformes) using CG-SSRs showed that these populations did not deviate from linkage equilibrium or Hardy-Weinberg equilibrium. Furthermore, almost no loci showed evidence of null alleles, suggesting that CG-SSRs have strong resolving power for population genetic analysis. Our findings will facilitate the use of these markers in species in which markers remain to be identified.
Collapse
Affiliation(s)
- Ryo O Gotoh
- Department of Biology, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, 990-8560, Japan.
| | | | | | | | | |
Collapse
|
8
|
Dawson DA, Horsburgh GJ, Krupa AP, Stewart IRK, Skjelseth S, Jensen H, Ball AD, Spurgin LG, Mannarelli ME, Nakagawa S, Schroeder J, Vangestel C, Hinten GN, Burke T. Microsatellite resources for Passeridae species: a predicted microsatellite map of the house sparrow Passer domesticus. Mol Ecol Resour 2012; 12:501-23. [PMID: 22321340 DOI: 10.1111/j.1755-0998.2012.03115.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We identified microsatellite sequences of potential utility in the house sparrow (Passer domesticus) and assigned their predicted genome locations. These sequences included newly isolated house sparrow loci, which we fully characterized. Many of the newly isolated loci were polymorphic in two other species of Passeridae: Berthelot's pipit Anthus berthelotii and zebra finch Taeniopygia guttata. In total, we identified 179 microsatellite markers that were either isolated directly from, or are of known utility in, the house sparrow. Sixty-seven of these markers were designed from unique sequences that we isolated from a house sparrow genomic library. These new markers were combined with 36 house sparrow markers isolated by other studies and 76 markers isolated from other passerine species but known to be polymorphic in the house sparrow. We utilized sequence homology to assign chromosomal locations for these loci in the assembled zebra finch genome. One hundred and thirty-four loci were assigned to 25 different autosomes and eight loci to the Z chromosome. Examination of the genotypes of known-sex house sparrows for 37 of the new loci revealed a W-linked locus and an additional Z-linked locus. Locus Pdoμ2, previously reported as autosomal, was found to be Z-linked. These loci enable the creation of powerful and cost-effective house sparrow multiplex primer sets for population and parentage studies. They can be used to create a house sparrow linkage map and will aid the identification of quantitative trait loci in passerine species.
Collapse
Affiliation(s)
- Deborah A Dawson
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Yu JN, Won C, Jun J, Lim Y, Kwak M. Fast and cost-effective mining of microsatellite markers using NGS technology: an example of a Korean water deer Hydropotes inermis argyropus. PLoS One 2011; 6:e26933. [PMID: 22069476 PMCID: PMC3206051 DOI: 10.1371/journal.pone.0026933] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 10/06/2011] [Indexed: 11/21/2022] Open
Abstract
Background Microsatellites, a special class of repetitive DNA sequence, have become one of the most popular genetic markers for population/conservation genetic studies. However, its application to endangered species has been impeded by high development costs, a lack of available sequences, and technical difficulties. The water deer Hydropotes inermis is the sole existing endangered species of the subfamily Capreolinae. Although population genetics studies are urgently required for conservation management, no species-specific microsatellite marker has been reported. Methods We adopted next-generation sequencing (NGS) to elucidate the microsatellite markers of Korean water deer and overcome these impediments on marker developments. We performed genotyping to determine the efficiency of this method as applied to population genetics. Results We obtained 98 Mbp of nucleotide information from 260,467 sequence reads. A total of 20,101 di-/tri-nucleotide repeat motifs were identified; di-repeats were 5.9-fold more common than tri-repeats. [CA]n and [AAC]n/[AAT]n repeats were the most frequent di- and tri-repeats, respectively. Of the 17,206 di-repeats, 12,471 microsatellite primer pairs were derived. PCR amplification of 400 primer pairs yielded 106 amplicons and 79 polymorphic markers from 20 individual Korean water deer. Polymorphic rates of the 79 new microsatellites varied from 2 to 11 alleles per locus (He: 0.050–0.880; Ho: 0.000–1.000), while those of known microsatellite markers transferred from cattle to Chinese water deer ranged from 4 to 6 alleles per locus (He: 0.279–0.714; Ho: 0.300–0.400). Conclusions Polymorphic microsatellite markers from Korean water deer were successfully identified using NGS without any prior sequence information and deposited into the public database. Thus, the methods described herein represent a rapid and low-cost way to investigate the population genetics of endangered/non-model species.
Collapse
Affiliation(s)
- Jeong-Nam Yu
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Changman Won
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Jumin Jun
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
- Department of Life Sciences, Ewha Womans University, Seoul, Korea
| | - YoungWoon Lim
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
| | - Myounghai Kwak
- National Institute of Biological Resources, Environmental Research Complex, Incheon, Korea
- * E-mail:
| |
Collapse
|
10
|
WORDLEY CLAIRE, SLATE JON, STAPLEY JESSICA. Mining online genomic resources in
Anolis carolinensis
facilitates rapid and inexpensive development of cross‐species microsatellite markers for the
Anolis
lizard genus. Mol Ecol Resour 2010; 11:126-33. [DOI: 10.1111/j.1755-0998.2010.02863.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- CLAIRE WORDLEY
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - JON SLATE
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| | - JESSICA STAPLEY
- Department of Animal and Plant Sciences, University of Sheffield, Alfred Denny Building, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
11
|
DAWSON DEBORAHA, HORSBURGH GAVINJ, KÜPPER CLEMENS, STEWART IANRK, BALL ALEXANDERD, DURRANT KATEL, HANSSON BENGT, BACON IDA, BIRD SUSANNAH, KLEIN ÁKOS, KRUPA ANDREWP, LEE JIN, MARTÍN‐GÁLVEZ DAVID, SIMEONI MICHELLE, SMITH GEMMA, SPURGIN LEWISG, BURKE TERRY. New methods to identify conserved microsatellite loci and develop primer sets of high cross‐species utility – as demonstrated for birds. Mol Ecol Resour 2010; 10:475-94. [DOI: 10.1111/j.1755-0998.2009.02775.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- DEBORAH A. DAWSON
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - GAVIN J. HORSBURGH
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - CLEMENS KÜPPER
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - IAN R. K. STEWART
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - ALEXANDER D. BALL
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - KATE L. DURRANT
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - BENGT HANSSON
- Department of Animal Ecology, Ecology Building, Lund University SE‐223 62 Lund, Sweden
| | - IDA BACON
- Institute of Evolutionary Biology, School of Biological Sciences, King’s Building, University of Edinburgh, Edinburgh, EH9 3JT, Scotland, UK
| | - SUSANNAH BIRD
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - ÁKOS KLEIN
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - ANDREW P. KRUPA
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - JIN‐WON LEE
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - DAVID MARTÍN‐GÁLVEZ
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - MICHELLE SIMEONI
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - GEMMA SMITH
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - LEWIS G. SPURGIN
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| | - TERRY BURKE
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
12
|
Olano-Marin J, Dawson DA, Girg A, Hansson B, Ljungqvist M, Kempenaers B, Mueller JC. A genome-wide set of 106 microsatellite markers for the blue tit (Cyanistes caeruleus). Mol Ecol Resour 2009; 10:516-32. [PMID: 21565051 DOI: 10.1111/j.1755-0998.2009.02777.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have characterized a set of 106 microsatellite markers in 26-127 individual blue tits (Cyanistes caeruleus), and assigned their location on the zebra finch (Taeniopygia guttata) and on the chicken (Gallus gallus) genome on the basis of sequence homology. Thirty-one markers are newly designed from zebra finch EST (expressed sequence tags) sequences, 22 markers were developed by others from EST sequences using different methods and the remaining 53 loci were previously designed or modified passerine markers. The 106 microsatellite markers are distributed over 26 and 24 chromosomes in the zebra finch and in the chicken genome respectively and the number of alleles varies between 2 and 49. Eight loci deviate significantly from Hardy-Weinberg equilibrium and show a high frequency of null alleles, and three pairs of markers located in the same chromosome appear to be in linkage disequilibrium. With the exception of these few loci, the polymorphic microsatellite markers presented here provide a useful genome-wide resource for population and evolutionary genetic studies of the blue tit, in addition to their potential utility in other passerine birds.
Collapse
Affiliation(s)
- Juanita Olano-Marin
- Department of Behavioral Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Postfach 1564, D-82305 Starnberg (Seewiesen), Germany Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK Department of Animal Ecology, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Abstract
Although the application of population and evolutionary genetic theory and methods to address issues of conservation relevance has a long history, the formalization of conservation genetics as a research field is still relatively recent. One of the periodic catalysts for increased research effort in the field has been advances in molecular technologies, leading to an increasingly wider variety of molecular markers for application in conservation genetic studies. To date, genetic methods have been applied in conservation biology primarily as selectively neutral molecular tools for resolving questions of conservation relevance. However, there has been renewed interest in complementing the analysis of neutral markers with the assessment of loci that may be directly involved in responses to processes such as environmental change, with a view to identifying the genes involved in them. These kinds of studies are now possible due to the increase in availability of genomic resources for nonmodel organisms, and there will likely be an even more rapid increase in the near future due to the advent of new ultrahigh throughput-sequencing technologies. This review considers the implications of the most recent developments in genomic technologies and their potential for contributing to the conservation of populations and species. Three "conservation genomics" case studies are presented (Atlantic salmon, Salmo sala; the butterfly, Melitaea cinxia; and the California condor, Gymnogyps californianus) in order to demonstrate the diversity of applications now possible. While it is clear that genomics approaches in conservation will not replace other tried-and-true methods, these recent developments open up an exciting new range of possibilities that will enable further diversification of the application of genomics in conservation biology.
Collapse
Affiliation(s)
- Craig R Primmer
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
15
|
A gene-based genetic linkage map of the collared flycatcher (Ficedula albicollis) reveals extensive synteny and gene-order conservation during 100 million years of avian evolution. Genetics 2008; 179:1479-95. [PMID: 18562642 DOI: 10.1534/genetics.108.088195] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
By taking advantage of a recently developed reference marker set for avian genome analysis we have constructed a gene-based genetic map of the collared flycatcher, an important "ecological model" for studies of life-history evolution, sexual selection, speciation, and quantitative genetics. A pedigree of 322 birds from a natural population was genotyped for 384 single nucleotide polymorphisms (SNPs) from 170 protein-coding genes and 71 microsatellites. Altogether, 147 gene markers and 64 microsatellites form 33 linkage groups with a total genetic distance of 1787 cM. Male recombination rates are, on average, 22% higher than female rates (total distance 1982 vs. 1627 cM). The ability to anchor the collared flycatcher map with the chicken genome via the gene-based SNPs revealed an extraordinary degree of both synteny and gene-order conservation during avian evolution. The great majority of chicken chromosomes correspond to a single linkage group in collared flycatchers, with only a few cases of inter- and intrachromosomal rearrangements. The rate of chromosomal diversification, fissions/fusions, and inversions combined is thus considerably lower in birds (0.05/MY) than in mammals (0.6-2.0/MY). A dearth of repeat elements, known to promote chromosomal breakage, in avian genomes may contribute to their stability. The degree of genome stability is likely to have important consequences for general evolutionary patterns and may explain, for example, the comparatively slow rate by which genetic incompatibility among lineages of birds evolves.
Collapse
|