1
|
Bolton CM, Bekaert M, Eilertsen M, Helvik JV, Migaud H. Rhythmic Clock Gene Expression in Atlantic Salmon Parr Brain. Front Physiol 2021; 12:761109. [PMID: 34925060 PMCID: PMC8674837 DOI: 10.3389/fphys.2021.761109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/09/2021] [Indexed: 12/28/2022] Open
Abstract
To better understand the complexity of clock genes in salmonids, a taxon with an additional whole genome duplication, an analysis was performed to identify and classify gene family members (clock, arntl, period, cryptochrome, nr1d, ror, and csnk1). The majority of clock genes, in zebrafish and Northern pike, appeared to be duplicated. In comparison to the 29 clock genes described in zebrafish, 48 clock genes were discovered in salmonid species. There was also evidence of species-specific reciprocal gene losses conserved to the Oncorhynchus sister clade. From the six period genes identified three were highly significantly rhythmic, and circadian in their expression patterns (per1a.1, per1a.2, per1b) and two was significantly rhythmically expressed (per2a, per2b). The transcriptomic study of juvenile Atlantic salmon (parr) brain tissues confirmed gene identification and revealed that there were 2,864 rhythmically expressed genes (p < 0.001), including 1,215 genes with a circadian expression pattern, of which 11 were clock genes. The majority of circadian expressed genes peaked 2 h before and after daylight. These findings provide a foundation for further research into the function of clock genes circadian rhythmicity and the role of an enriched number of clock genes relating to seasonal driven life history in salmonids.
Collapse
Affiliation(s)
- Charlotte M Bolton
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Michaël Bekaert
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Mariann Eilertsen
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
2
|
Ferguson A, Reed TE, Cross TF, McGinnity P, Prodöhl PA. Anadromy, potamodromy and residency in brown trout Salmo trutta: the role of genes and the environment. JOURNAL OF FISH BIOLOGY 2019; 95:692-718. [PMID: 31197849 PMCID: PMC6771713 DOI: 10.1111/jfb.14005] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/09/2019] [Indexed: 05/10/2023]
Abstract
Brown trout Salmo trutta is endemic to Europe, western Asia and north-western Africa; it is a prominent member of freshwater and coastal marine fish faunas. The species shows two resident (river-resident, lake-resident) and three main facultative migratory life histories (downstream-upstream within a river system, fluvial-adfluvial potamodromous; to and from a lake, lacustrine-adfluvial (inlet) or allacustrine (outlet) potamodromous; to and from the sea, anadromous). River-residency v. migration is a balance between enhanced feeding and thus growth advantages of migration to a particular habitat v. the costs of potentially greater mortality and energy expenditure. Fluvial-adfluvial migration usually has less feeding improvement, but less mortality risk, than lacustrine-adfluvial or allacustrine and anadromous, but the latter vary among catchments as to which is favoured. Indirect evidence suggests that around 50% of the variability in S. trutta migration v. residency, among individuals within a population, is due to genetic variance. This dichotomous decision can best be explained by the threshold-trait model of quantitative genetics. Thus, an individual's physiological condition (e.g., energy status) as regulated by environmental factors, genes and non-genetic parental effects, acts as the cue. The magnitude of this cue relative to a genetically predetermined individual threshold, governs whether it will migrate or sexually mature as a river-resident. This decision threshold occurs early in life and, if the choice is to migrate, a second threshold probably follows determining the age and timing of migration. Migration destination (mainstem river, lake, or sea) also appears to be genetically programmed. Decisions to migrate and ultimate destination result in a number of subsequent consequential changes such as parr-smolt transformation, sexual maturity and return migration. Strong associations with one or a few genes have been found for most aspects of the migratory syndrome and indirect evidence supports genetic involvement in all parts. Thus, migratory and resident life histories potentially evolve as a result of natural and anthropogenic environmental changes, which alter relative survival and reproduction. Knowledge of genetic determinants of the various components of migration in S. trutta lags substantially behind that of Oncorhynchus mykiss and other salmonines. Identification of genetic markers linked to migration components and especially to the migration-residency decision, is a prerequisite for facilitating detailed empirical studies. In order to predict effectively, through modelling, the effects of environmental changes, quantification of the relative fitness of different migratory traits and of their heritabilities, across a range of environmental conditions, is also urgently required in the face of the increasing pace of such changes.
Collapse
Affiliation(s)
- Andrew Ferguson
- School of Biological SciencesQueen's University BelfastBelfastUK
| | - Thomas E. Reed
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Tom F. Cross
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Philip McGinnity
- School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
| | - Paulo A. Prodöhl
- School of Biological SciencesQueen's University BelfastBelfastUK
| |
Collapse
|
3
|
Spatiotemporal genetic structure of anadromous Arctic char (Salvelinus alpinus) populations in a region experiencing pronounced climate change. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1047-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Tsai HY, Hamilton A, Guy DR, Tinch AE, Bishop SC, Houston RD. The genetic architecture of growth and fillet traits in farmed Atlantic salmon (Salmo salar). BMC Genet 2015; 16:51. [PMID: 25985885 PMCID: PMC4436873 DOI: 10.1186/s12863-015-0215-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/11/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Performance and quality traits such as harvest weight, fillet weight and flesh color are of economic importance to the Atlantic salmon aquaculture industry. The genetic factors underlying these traits are of scientific and commercial interest. However, such traits are typically polygenic in nature, with the number and size of QTL likely to vary between studies and populations. The aim of this study was to investigate the genetic basis of several growth and fillet traits measured at harvest in a large farmed salmon population by using SNP markers. Due to the marked heterochiasmy in salmonids, an efficient two-stage mapping approach was applied whereby QTL were detected using a sire-based linkage analysis, a sparse SNP marker map and exploiting low rates of recombination, while a subsequent dam-based analysis focused on the significant chromosomes with a denser map to confirm QTL and estimate their position. RESULTS The harvest traits all showed significant heritability, ranging from 0.05 for fillet yield up to 0.53 for the weight traits. In the sire-based analysis, 1695 offspring with trait records and their 20 sires were successfully genotyped for the SNPs on the sparse map. Chromosomes 13, 18, 19 and 20 were shown to harbor genome-wide significant QTL affecting several growth-related traits. The QTL on chr. 13, 18 and 20 were detected in the dam-based analysis using 512 offspring from 10 dams and explained approximately 6-7 % of the within-family variation in these traits. CONCLUSIONS We have detected several QTL affecting economically important complex traits in a commercial salmon population. Overall, the results suggest that the traits are relatively polygenic and that QTL tend to be pleiotropic (affecting the weight of several components of the harvested fish). Comparison of QTL regions across studies suggests that harvest trait QTL tend to be relatively population-specific. Therefore, the application of marker or genomic selection for improvement in these traits is likely to be most effective when the discovery population is closely related to the selection candidates (e.g. within-family genomic selection).
Collapse
Affiliation(s)
- Hsin Yuan Tsai
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK.
| | - Derrick R Guy
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK.
| | - Alan E Tinch
- Landcatch Natural Selection Ltd., 15 Beta Centre, Stirling University Innovation Park, Stirling, FK9 4NF, UK.
| | - Stephen C Bishop
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK.
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG, UK.
| |
Collapse
|
5
|
Genome-wide association study (GWAS) for growth rate and age at sexual maturation in Atlantic salmon (Salmo salar). PLoS One 2015; 10:e0119730. [PMID: 25757012 PMCID: PMC4355585 DOI: 10.1371/journal.pone.0119730] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 01/25/2015] [Indexed: 11/26/2022] Open
Abstract
Early sexual maturation is considered a serious drawback for Atlantic salmon aquaculture as it retards growth, increases production times and affects flesh quality. Although both growth and sexual maturation are thought to be complex processes controlled by several genetic and environmental factors, selection for these traits has been continuously accomplished since the beginning of Atlantic salmon selective breeding programs. In this genome-wide association study (GWAS) we used a 6.5K single-nucleotide polymorphism (SNP) array to genotype ∼480 individuals from the Cermaq Canada broodstock program and search for SNPs associated with growth and age at sexual maturation. Using a mixed model approach we identified markers showing a significant association with growth, grilsing (early sexual maturation) and late sexual maturation. The most significant associations were found for grilsing, with markers located in Ssa10, Ssa02, Ssa13, Ssa25 and Ssa12, and for late maturation with markers located in Ssa28, Ssa01 and Ssa21. A lower level of association was detected with growth on Ssa13. Candidate genes, which were linked to these genetic markers, were identified and some of them show a direct relationship with developmental processes, especially for those in association with sexual maturation. However, the relatively low power to detect genetic markers associated with growth (days to 5 kg) in this GWAS indicates the need to use a higher density SNP array in order to overcome the low levels of linkage disequilibrium observed in Atlantic salmon before the information can be incorporated into a selective breeding program.
Collapse
|
6
|
Kim JH, White SL, Devlin RH. Interaction of growth hormone overexpression and nutritional status on pituitary gland clock gene expression in coho salmon,Oncorhynchus kisutch. Chronobiol Int 2014; 32:113-27. [DOI: 10.3109/07420528.2014.958160] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
7
|
Brönmark C, Hulthén K, Nilsson P, Skov C, Hansson LA, Brodersen J, Chapman B. There and back again: migration in freshwater fishes. CAN J ZOOL 2014. [DOI: 10.1139/cjz-2012-0277] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Animal migration is an amazing phenomenon that has fascinated humans for long. Many freshwater fishes also show remarkable migrations, whereof the spectacular mass migrations of salmonids from the spawning streams are the most well known and well studied. However, recent studies have shown that migration occurs in a range of freshwater fish taxa from many different habitats. In this review we focus on the causes and consequences of migration in freshwater fishes. We start with an introduction of concepts and categories of migration, and then address the evolutionary causes that drive individuals to make these migratory journeys. The basis for the decision of an individual fish to migrate or stay resident is an evaluation of the costs and benefits of different strategies to maximize its lifetime reproductive effort. We provide examples by discussing our own work on the causes behind seasonal migration in a cyprinid fish, roach (Rutilus rutilus (L., 1758)), within this framework. We then highlight different adaptations that allow fish to migrate over sometimes vast journeys across space, including capacity for orientation, osmoregulation, and efficient energy expenditure. Following this we consider the consequences of migration in freshwater fish from ecological, evolutionary, and conservation perspectives, and finally, we detail some of the recent developments in the methodologies used to collect data on fish migration and how these could be used in future research.
Collapse
Affiliation(s)
- C. Brönmark
- Department of Biology, Aquatic Ecology Unit, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | - K. Hulthén
- Department of Biology, Aquatic Ecology Unit, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | - P.A. Nilsson
- Department of Biology, Aquatic Ecology Unit, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | - C. Skov
- National institute of Aquatic Resources, Technical University of Denmark, Jægersborg Allé 1, DK-2920 Charlottenlund, Denmark
| | - L.-A. Hansson
- Department of Biology, Aquatic Ecology Unit, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| | - J. Brodersen
- Department of Fish Ecology and Evolution, Centre for Ecology, Evolution and Biogeochemistry, EAWAG Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, P.O. Box 611, 8600 Dübendorf, Switzerland
| | - B.B. Chapman
- Department of Biology, Aquatic Ecology Unit, Ecology Building, Lund University, SE-223 62 Lund, Sweden
| |
Collapse
|
8
|
Banks MA, Jacobson DP, Meusnier I, Greig CA, Rashbrook VK, Ardren WR, Smith CT, Bernier‐Latmani J, Van Sickle J, O'Malley KG. Testing advances in molecular discrimination among Chinook salmon life histories: evidence from a blind test. Anim Genet 2014; 45:412-20. [PMID: 24628286 PMCID: PMC4112815 DOI: 10.1111/age.12135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2014] [Indexed: 11/29/2022]
Abstract
The application of DNA-based markers toward the task of discriminating among alternate salmon runs has evolved in accordance with ongoing genomic developments and increasingly has enabled resolution of which genetic markers associate with important life-history differences. Accurate and efficient identification of the most likely origin for salmon encountered during ocean fisheries, or at salvage from fresh water diversion and monitoring facilities, has far-reaching consequences for improving measures for management, restoration and conservation. Near-real-time provision of high-resolution identity information enables prompt response to changes in encounter rates. We thus continue to develop new tools to provide the greatest statistical power for run identification. As a proof of concept for genetic identification improvements, we conducted simulation and blind tests for 623 known-origin Chinook salmon (Oncorhynchus tshawytscha) to compare and contrast the accuracy of different population sampling baselines and microsatellite loci panels. This test included 35 microsatellite loci (1266 alleles), some known to be associated with specific coding regions of functional significance, such as the circadian rhythm cryptochrome genes, and others not known to be associated with any functional importance. The identification of fall run with unprecedented accuracy was demonstrated. Overall, the top performing panel and baseline (HMSC21) were predicted to have a success rate of 98%, but the blind-test success rate was 84%. Findings for bias or non-bias are discussed to target primary areas for further research and resolution.
Collapse
Affiliation(s)
- Michael A. Banks
- Coastal Oregon Marine Experiment StationDepartment of Fisheries and WildlifeHatfield Marine Science CenterOregon State UniversityNewportOR97365USA
| | - David P. Jacobson
- Coastal Oregon Marine Experiment StationDepartment of Fisheries and WildlifeHatfield Marine Science CenterOregon State UniversityNewportOR97365USA
| | - Isabelle Meusnier
- Center for Biology and Management of PopulationsMontpellier34000France
| | - Carolyn A. Greig
- Department of BiosciencesCollege of ScienceSwansea UniversitySwanseaWalesSA1 1LGUK
| | - Vanessa K. Rashbrook
- UC Davis Genome Center – DNA Technologies CoreUC DavisOne Shields AveDavisCA95616USA
| | | | | | | | - John Van Sickle
- Department of Fisheries and WildlifeOregon State UniversityCorvallisOR97331USA
| | - Kathleen G. O'Malley
- Coastal Oregon Marine Experiment StationDepartment of Fisheries and WildlifeHatfield Marine Science CenterOregon State UniversityNewportOR97365USA
| |
Collapse
|
9
|
Lemay MA, Russello MA. Latitudinal cline in allele length provides evidence for selection in a circadian rhythm gene. Biol J Linn Soc Lond 2014. [DOI: 10.1111/bij.12267] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Matthew A. Lemay
- Okanagan Campus; University of British Columbia; 3333 University Way Kelowna BC V1V 1V7 Canada
| | - Michael A. Russello
- Okanagan Campus; University of British Columbia; 3333 University Way Kelowna BC V1V 1V7 Canada
| |
Collapse
|
10
|
O'Malley KG, Jacobson DP, Kurth R, Dill AJ, Banks MA. Adaptive genetic markers discriminate migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid continued gene flow. Evol Appl 2013; 6:1184-94. [PMID: 24478800 PMCID: PMC3901548 DOI: 10.1111/eva.12095] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 07/08/2013] [Indexed: 12/12/2022] Open
Abstract
Neutral genetic markers are routinely used to define distinct units within species that warrant discrete management. Human-induced changes to gene flow however may reduce the power of such an approach. We tested the efficiency of adaptive versus neutral genetic markers in differentiating temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha) amid high gene flow owing to artificial propagation and habitat alteration. We compared seven putative migration timing genes to ten microsatellite loci in delineating three migratory groups of Chinook in the Feather River, CA: offspring of fall-run hatchery broodstock that returned as adults to freshwater in fall (fall run), spring-run offspring that returned in spring (spring run), and fall-run offspring that returned in spring (FRS). We found evidence for significant differentiation between the fall and federally listed threatened spring groups based on divergence at three circadian clock genes (OtsClock1b, OmyFbxw11, and Omy1009UW), but not neutral markers. We thus demonstrate the importance of genetic marker choice in resolving complex life history types. These findings directly impact conservation management strategies and add to previous evidence from Pacific and Atlantic salmon indicating that circadian clock genes influence migration timing.
Collapse
Affiliation(s)
- Kathleen G O'Malley
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University Newport, OR, USA
| | - Dave P Jacobson
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University Newport, OR, USA
| | - Ryon Kurth
- California Department of Water Resources, Division of Environmental Services Oroville, CA, USA
| | - Allen J Dill
- California Department of Fish and Game, Feather River Hatchery Oroville, CA, USA
| | - Michael A Banks
- Department of Fisheries and Wildlife, Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Oregon State University Newport, OR, USA
| |
Collapse
|
11
|
Kovach RP, Gharrett AJ, Tallmon DA. Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing. Evol Appl 2013; 6:795-807. [PMID: 29387166 PMCID: PMC5779130 DOI: 10.1111/eva.12066] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 03/04/2013] [Indexed: 01/17/2023] Open
Abstract
Though genetic diversity is necessary for population persistence in rapidly changing environments, little is known about how climate-warming influences patterns of intra-population genetic variation. For a pink salmon population experiencing increasing temperatures, we used temporal genetic data (microsatellite = 1993, 2001, 2009; allozyme = 1979, 1981, 1983) to quantify the genetic effective population size (Ne ) and genetic divergence due to differences in migration timing and to estimate whether these quantities have changed over time. We predicted that temporal trends toward earlier migration timing and a corresponding loss of phenotypic variation would decrease genetic divergence based on migration timing and Ne . We observed significant genetic divergence based on migration timing and genetic heterogeneity between early- and late-migrating fish. There was also some evidence for divergent selection between early- and late-migrating fish at circadian rhythm genes, but results varied over time. Estimates of Ne from multiple methods were large (>1200) and Ne /Nc generally exceeded 0.2. Despite shifts in migration timing and loss of phenotypic variation, there was no evidence for changes in within-population genetic divergence or Ne over the course of this study. These results suggest that in instances of population stability, genetic diversity may be resistant to climate-induced changes in migration timing.
Collapse
Affiliation(s)
- Ryan P Kovach
- Biology and Wildlife Department Institute of Arctic Biology University of Alaska Fairbanks Fairbanks AK USA
| | - Anthony J Gharrett
- School of Fisheries and Oceanic Sciences University of Alaska Fairbanks Juneau AK USA
| | - David A Tallmon
- Biology and Wildlife Department Institute of Arctic Biology University of Alaska Fairbanks Fairbanks AK USA
- School of Fisheries and Oceanic Sciences University of Alaska Fairbanks Juneau AK USA
- Biology and Marine Biology Program University of Alaska Southeast Juneau AK USA
| |
Collapse
|
12
|
Araneda C, Díaz NF, Gomez G, López ME, Iturra P. Comparative mapping reveals quantitative trait loci that affect spawning time in coho salmon (Oncorhynchus kisutch). Genet Mol Biol 2012; 35:515-21. [PMID: 22888302 PMCID: PMC3389541 DOI: 10.1590/s1415-47572012000300019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 01/05/2012] [Indexed: 11/22/2022] Open
Abstract
Spawning time in salmonids is a sex-limited quantitative trait that can be modified by selection. In rainbow trout (Oncorhynchus mykiss), various quantitative trait loci (QTL) that affect the expression of this trait have been discovered. In this study, we describe four microsatellite loci associated with two possible spawning time QTL regions in coho salmon (Oncorhynchus kisutch). The four loci were identified in females from two populations (early and late spawners) produced by divergent selection from the same base population. Three of the loci (OmyFGT34TUF, One2ASC and One19ASC) that were strongly associated with spawning time in coho salmon (p < 0.0002) were previously associated with QTL for the same trait in rainbow trout; a fourth loci (Oki10) with a suggestive association (p = 0.00035) mapped 10 cM from locus OmyFGT34TUF in rainbow trout. The changes in allelic frequency observed after three generations of selection were greater than expected because of genetic drift. This work shows that comparing information from closely-related species is a valid strategy for identifying QTLs for marker-assisted selection in species whose genomes are poorly characterized or lack a saturated genetic map.
Collapse
Affiliation(s)
- Cristian Araneda
- Departamento de Producción Animal, Facultad de Ciencias Agronómicas, Universidad de Chile, La Pintana, Región Metropolitana, Santiago, Chile
| | | | | | | | | |
Collapse
|
13
|
Kovach RP, Gharrett AJ, Tallmon DA. Genetic change for earlier migration timing in a pink salmon population. Proc Biol Sci 2012; 279:3870-8. [PMID: 22787027 DOI: 10.1098/rspb.2012.1158] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To predict how climate change will influence populations, it is necessary to understand the mechanisms, particularly microevolution and phenotypic plasticity, that allow populations to persist in novel environmental conditions. Although evidence for climate-induced phenotypic change in populations is widespread, evidence documenting that these phenotypic changes are due to microevolution is exceedingly rare. In this study, we use 32 years of genetic data (17 complete generations) to determine whether there has been a genetic change towards earlier migration timing in a population of pink salmon that shows phenotypic change; average migration time occurs nearly two weeks earlier than it did 40 years ago. Experimental genetic data support the hypothesis that there has been directional selection for earlier migration timing, resulting in a substantial decrease in the late-migrating phenotype (from more than 30% to less than 10% of the total abundance). From 1983 to 2011, there was a significant decrease--over threefold--in the frequency of a genetic marker for late-migration timing, but there were minimal changes in allele frequencies at other neutral loci. These results demonstrate that there has been rapid microevolution for earlier migration timing in this population. Circadian rhythm genes, however, did not show any evidence for selective changes from 1993 to 2009.
Collapse
Affiliation(s)
- Ryan P Kovach
- Biology and Wildlife Department, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| | | | | |
Collapse
|
14
|
Sauvage C, Vagner M, Derôme N, Audet C, Bernatchez L. Coding Gene Single Nucleotide Polymorphism Mapping and Quantitative Trait Loci Detection for Physiological Reproductive Traits in Brook Charr, Salvelinus fontinalis. G3 (BETHESDA, MD.) 2012; 2:379-92. [PMID: 22413092 PMCID: PMC3291508 DOI: 10.1534/g3.111.001867] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
A linkage map of 40 linkage groups (LGs) was developed for brook charr, Salvelinus fontinalis, using an F(2) interstrain hybrid progeny (n = 171) and 256 coding gene SNP developed specifically for brook charr and validated from a large (>1000) subset of putative SNP, as well as 81 microsatellite markers. To identify quantitative trait loci (QTL) related to reproduction functions, these fish were also phenotyped at six physiological traits, including spermatozoid head diameter, sperm concentration, plasma testosterone, plasma 11-keto-testosterone, egg diameter, and plasma 17β-estradiol. Five significant QTL were detected over four LGs for egg diameter and plasma 17β-estradiol concentration in females, and sperm concentration as well as spermatozoid head diameter in males. In females, two different QTLs located on LG 11 and LG 34 were associated with the egg number, whereas one QTL was associated with plasma 17β-estradiol concentration (LG 8). Their total percent variance explained (PVE) was 26.7% and 27.6%, respectively. In males, two QTL were also detected for the sperm concentration, and their PVE were estimated at 18.58% and 14.95%, respectively. The low QTL number, associated with the high PVE, suggests that the variance in these reproductive physiological traits was either under the control of one major gene or a small number of genes. The QTL associated with sperm concentration, plasma 17β-estradiol, and egg diameter appeared to be under a dominance effect, whereas the two others were under a negative additive effect. These results show that genes underlying the phenotypic variance of these traits are under different modes of action (additive vs. dominance) and may be used to predict an increase or a decrease in their phenotypic values in subsequent generations of selective breeding. Moreover, this newly developed panel of mapped SNP located in coding gene regions will be useful for screening wild populations, especially in the context of investigating the genetic impact of massive stocking of domestic brook charr to support the angling industry throughout eastern North America.
Collapse
Affiliation(s)
- Christopher Sauvage
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec (Québec) Canada, G1V 0A6
- INRA, UR1052, Unité de Génétique et d’Amélioration des Fruits et Légumes, 84143 Montfavet, France
| | - Marie Vagner
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski (Québec) Canada, G5L 3A1
- Institut du Littoral et de l’Environnement, LIENSs UMR6250, 2 rue Olympe de Gouges, 17000 La Rochelle, France
| | - Nicolas Derôme
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec (Québec) Canada, G1V 0A6
| | - Céline Audet
- Institut des sciences de la mer de Rimouski (ISMER), Université du Québec à Rimouski (UQAR), Rimouski (Québec) Canada, G5L 3A1
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Département de Biologie, Université Laval, Québec (Québec) Canada, G1V 0A6
| |
Collapse
|