1
|
Ono H, Nagai K, Higuchi H. Dark Morph of the Oriental Honey-Buzzard ( Pernis ptilorhynchus orientalis) is Attributable to Specific MC1R Haplotypes. Zoolog Sci 2024; 41:342-350. [PMID: 39093280 DOI: 10.2108/zs230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 08/04/2024]
Abstract
A thorough understanding of the development of complex plumages in birds necessitates the acquisition of genetic data pertaining to the mechanism underlying this phenomenon from various avian species. The oriental honey-buzzard (Pernis ptilorhynchus orientalis), a tropical summer migrant to Northeast Asia, including Japan, exemplifies this aspect owing to the diversity of its ventral coloration and intra-feather barring patterns. However, genetic polymorphism responsible for this diversity has not been identified yet. This study aimed to investigate the link between dark-plumed phenotypes of this subspecies and haplotypes of the melanocortin-1-receptor (MC1R) gene. A draft sequence of MC1R was constructed using next generation sequencing and subsequently amplified using designed polymerase chain reaction (PCR) primers. The genome sequences of 32 honey-buzzard individuals were determined using PCR, and 12 MC1R haplotype sequences were obtained. Among these haplotypes, we found that unique haplotypes with nine non-synonymous substitutions and four or five synonymous substitutions in the coding region had a perfect correlation with the dark-plumed phenotype. The lack of correlation between the genotype of ASIP coding region and plumage phenotype reiterated that the dark morph is attributable to specific MC1R haplotypes. The absence of a correlation between genetic polymorphisms of MC1R and the intra-feather barring patterns, as well as the diversity observed within lighter ground color classes (pale and intermediate), implies the involvement of alternative molecular mechanisms in the manifestation of the aforementioned phenotypes.
Collapse
Affiliation(s)
- Hirotake Ono
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan,
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Kazuya Nagai
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyoshi Higuchi
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| |
Collapse
|
2
|
Kulikova IV. Molecular Mechanisms and Gene Regulation of Melanic Plumage Coloration in Birds. RUSS J GENET+ 2021. [DOI: 10.1134/s102279542108007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Heritability of plumage colour morph variation in a wild population of promiscuous, long-lived Australian magpies. Heredity (Edinb) 2019; 123:349-358. [PMID: 30911140 PMCID: PMC6781111 DOI: 10.1038/s41437-019-0212-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/13/2019] [Accepted: 02/20/2019] [Indexed: 11/08/2022] Open
Abstract
Colour polymorphisms have evolutionary significance for the generation and maintenance of species diversity. Demonstrating heritability of polymorphic traits can be challenging for wild populations of long-lived species because accurate information is required on trait expression and familial relationships. The Australian magpie Cracticus tibicen has a continent-wide distribution featuring several distinct plumage morphs, differing primarily in colour of back feathers. Black or white-backed morphs occur in eastern Australia, with intermediate morphs common in a narrow hybrid zone where the two morphs meet. This study investigated heritability of back colour phenotypes in a hybrid zone population (Seymour, Victoria) based on long-term observational data and DNA samples collected over an 18 year period (1993-2010). High extra-pair paternity (~ 36% offspring), necessitated verification of parent-offspring relationships by parentage analysis. A total of 538 birds (221 parents and 317 offspring) from 36 territories were analysed. Back colour was a continuous trait scored on a five-morph scale in the field (0-4). High and consistent estimates of back colour heritability (h2) were obtained via weighted mid-parent regression (h2 = 0.94) and by animal models (h2 = 0.92, C.I. 0.80-0.99). Single-parent heritability estimates indicated neither maternal nor paternal non-genetic effects (e.g., parent body condition) played a large role in determining offspring back colour, and environmental effects of territory group and cohort contributed little to trait heritability. Distinctive back colouration of the Australian magpie behaves as a quantitative trait that is likely polygenic, although mechanisms responsible for maintaining these geographically structured morphs and the hybrid zone where they meet are unknown.
Collapse
|
4
|
Farrell LL, Küpper C, Burke T, Lank DB. Major breeding plumage color differences of male ruffs (Philomachus pugnax) are not associated with coding sequence variation in the MC1R gene. J Hered 2014; 106:211-5. [PMID: 25534935 PMCID: PMC4323066 DOI: 10.1093/jhered/esu079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Sequence variation in the melanocortin-1 receptor (MC1R) gene explains color morph variation in several species of birds and mammals. Ruffs (Philomachus pugnax) exhibit major dark/light color differences in melanin-based male breeding plumage which is closely associated with alternative reproductive behavior. A previous study identified a microsatellite marker (Ppu020) near the MC1R locus associated with the presence/absence of ornamental plumage. We investigated whether coding sequence variation in the MC1R gene explains major dark/light plumage color variation and/or the presence/absence of ornamental plumage in ruffs. Among 821bp of the MC1R coding region from 44 male ruffs we found 3 single nucleotide polymorphisms, representing 1 nonsynonymous and 2 synonymous amino acid substitutions. None were associated with major dark/light color differences or the presence/absence of ornamental plumage. At all amino acid sites known to be functionally important in other avian species with dark/light plumage color variation, ruffs were either monomorphic or the shared polymorphism did not coincide with color morph. Neither ornamental plumage color differences nor the presence/absence of ornamental plumage in ruffs are likely to be caused entirely by amino acid variation within the coding regions of the MC1R locus. Regulatory elements and structural variation at other loci may be involved in melanin expression and contribute to the extreme plumage polymorphism observed in this species.
Collapse
Affiliation(s)
- Lindsay L Farrell
- From the Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK (Farrell, Küpper, and Burke); and the Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada (Farrell and Lank). Lindsay L. Farrell is now at Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK.
| | - Clemens Küpper
- From the Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK (Farrell, Küpper, and Burke); and the Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada (Farrell and Lank). Lindsay L. Farrell is now at Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - Terry Burke
- From the Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK (Farrell, Küpper, and Burke); and the Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada (Farrell and Lank). Lindsay L. Farrell is now at Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| | - David B Lank
- From the Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK (Farrell, Küpper, and Burke); and the Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada (Farrell and Lank). Lindsay L. Farrell is now at Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Kerr KCR, Dove CJ. Delimiting shades of gray: phylogeography of the Northern Fulmar, Fulmarus glacialis. Ecol Evol 2013; 3:1915-30. [PMID: 23919139 PMCID: PMC3728934 DOI: 10.1002/ece3.597] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 04/12/2013] [Accepted: 04/15/2013] [Indexed: 11/17/2022] Open
Abstract
The Northern Fulmar (Fulmarus glacialis) is a common tube-nosed seabird with a disjunct Holarctic range. Taxonomic divisions within the Northern Fulmar have historically been muddled by geographical variation notably including highly polymorphic plumage. Recent molecular analyses (i.e., DNA barcoding) have suggested that genetic divergence between Atlantic and Pacific populations could be on par with those typically observed between species. We employ a multigene phylogenetic analysis to better explore the level of genetic divergence between these populations and to test an old hypothesis on the origin of the modern distribution of color morphs across their range. Additionally, we test whether mutations in the melanocortin-1 receptor gene (MC1R) are associated with dark plumage in the Northern Fulmar. We confirmed that mitochondrial lineages in the Atlantic and Pacific populations are highly divergent, but nuclear markers revealed incomplete lineage sorting. Genetic divergence between these populations is consistent with that observed between many species of Procellariiformes and we recommend elevating these two forms to separate species. We also find that MC1R variation is not associated with color morph but rather is better explained by geographical divergence.
Collapse
Affiliation(s)
- Kevin C R Kerr
- Division of Birds, National Museum of Natural History, Smithsonian Institution Washington, DC, 20560
| | | |
Collapse
|