1
|
Gao Z, Sun B, Fan Z, Su Y, Zheng C, Chen W, Yao Y, Ma C, Du Y. Vv-circSIZ1 mediated by pre-mRNA processing machinery contributes to salt tolerance. THE NEW PHYTOLOGIST 2023; 240:644-662. [PMID: 37530126 DOI: 10.1111/nph.19181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
CircRNAs exist widely in plants, but the regulatory mechanisms for the biogenesis and function of plant circRNAs remain largely unknown. Using extensive mutagenesis of expression plasmids and genetic transformation methods, we analyzed the biogenesis and anti-salt functions of a new grape circRNA Vv-circSIZ1. We identified Vv-circSIZ1 that is mainly expressed in the cytoplasm of xylem. CircSIZ1 is species-specific, and genomic circSIZ1-forming region of seven tested species could be backspliced in Nicotiana benthamiana, but not in Arabidopsis. The retention length of Vv-circSIZ1 flanking introns was significantly positively correlated with its generation efficiency. The precise splicing of Vv-circSIZ1 does not depend on its mature exon sequence or internal intron sequences, but on the AG/GT splicing signal sites and branch site of the flanking introns. The spliceosome activity was inversely proportional to the expression level of Vv-circSIZ1. Furthermore, RNA-binding proteins can regulate the expression of Vv-circSIZ1. The overexpression of Vv-circSIZ1 improved salt tolerance of grape and N. benthamiana. Additionally, Vv-circSIZ1 could relieve the repressive effect of VvmiR3631 on its target VvVHAc1. Vv-circSIZ1 also promoted transcription of its parental gene. Overall, these results broaden our understanding of circRNAs in plants.
Collapse
Affiliation(s)
- Zhen Gao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Baozhen Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zongbao Fan
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Yifan Su
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Weiping Chen
- Institute of Horticulture, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia, 750002, China
| | - Yuxin Yao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuanpeng Du
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
2
|
Chen QJ, Zhang LP, Song SR, Wang L, Xu WP, Zhang CX, Wang SP, Liu HF, Ma C. vvi-miPEP172b and vvi-miPEP3635b increase cold tolerance of grapevine by regulating the corresponding MIRNA genes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111450. [PMID: 36075277 DOI: 10.1016/j.plantsci.2022.111450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 08/16/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
As a kind of small molecular weight proteins, many peptides have been discovered, including peptides encoded by pri-miRNA (miPEPs). Similar as traditional phytohormone or signaling molecular, these peptides participate in numerous plant growth processes. MicroRNAs (miRNAs) play an important regulatory role in plant stress response. While the roles of miPEPs in response to abiotic stress has not been studied now. In this study, to explore whether miPEPs could contribute to low temperature (4ºC) tolerance of plants, the expression pattern of 23 different vvi-MIRs were analyzed by qRT-PCR in 'Thompson Seedless' (Vitis vinifera) plantlets under cold stress (4ºC) firstly, and vvi-MIR172b and vvi-MIR3635b which showed an elevated expression levels were selected to identify miPEPs. Through transient expression, one small open reading frame (sORF) in each of the two pri-miRNAs could increase the expression of corresponding vvi-MIR, and the amino acid sequences of sORFs were named vvi-miPEP172b and vvi-miPEP3635b, respectively. The synthetic vvi-miPEP172b and vvi-miPEP3635b were applied to the grape plantlets, and the tissue culture plantlets exhibited a higher cold tolerance compared with the control groups. These results revealed the effective roles of miPEPs in plant cold stress resistance for the first time, providing a theoretical basis for the future application of miPEPs to agricultural production.
Collapse
Affiliation(s)
- Qiu-Ju Chen
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271000, China
| | - Li-Peng Zhang
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Shi-Ren Song
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wen-Ping Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cai-Xi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shi-Ping Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Huai-Feng Liu
- Department of Horticulture, College of Agriculture, Shihezi University, Shihezi 832003, Xinjiang, China; Xinjiang Production and Construction Corps Key Laboratory of Special Fruits and Vegetables Cultivation Physiology and Germplasm Resources Utilization, Shihezi 832003, Xinjiang, China
| | - Chao Ma
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
Su Z, Xuan X, Sheng Z, Wang F, Zhang X, Ye D, Wang X, Dong T, Pei D, Zhang P, Fang J, Wang C. Characterization and regulatory mechanism analysis of VvmiR156a-VvAGL80 pair during grapevine flowering and parthenocarpy process induced by gibberellin. THE PLANT GENOME 2022; 15:e20181. [PMID: 34882981 DOI: 10.1002/tpg2.20181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
MicroRNA156 (miR156) is an important conserved miRNA family in plants. Recently, we revealed VvmiR156a could involve in the modulation of gibberellin (GA)-mediated flower and berry development process of grapevine (Vitis vinifera L.). However, how to manipulate this process is unclear. For this, we used the GA-induced grapevine parthenocarpy system to investigate the regulatory roles of VvmiR156a during this process. Here, we cloned the mature and precursor sequences of VvmiR156a in Wink grape and identified its potential target gene VvAGL80, which belongs to the MADS-box gene family. Moreover, using RNA ligase-mediated 5' rapid amplification of cDNA ends (RLM-RACE) and poly(A)polymerase-mediated 3' rapid amplification of cDNA (PPM-RACE) technologies, it confirmed that VvAGL80 was the true target gene of VvmiR159a. Analysis of promoter cis-elements and β-glucuronidase (GUS) staining showed that both VvmiR156a and VvAGL80 contained GA-responsive elements and could respond to GA treatments. Quantitative real-time-polymerase chain reaction (qRT-PCR) analysis exhibited the VvmiR156a and VvAGL80 showed opposite expression trends during grapevine flower and berry development, indicating that VvmiR156a negatively regulated the expression of VvAGL80 during this process. After GA treatment, the expression of miR156 in flowers was downregulated significantly, while that of VvAGL80 was upregulated, thereby accelerating grapevine flowering. Furthermore, GA treatment enhanced the negative regulation of VvmiR156a on VvAGL80 in seed, especially at the seed-coat hardening stage, which was the key period of seed growth and development. Our findings enriched the knowledge of the regulatory mechanism of the miRNA-mediated grapevine parthenocarpy process.
Collapse
Affiliation(s)
- Ziwen Su
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Zilu Sheng
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Fei Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Xiaowen Zhang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Dongdong Ye
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Tianyu Dong
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Dan Pei
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Peian Zhang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural Univ., Nanjing, 210095, China
| |
Collapse
|
4
|
Zhao M, Liu R, Chen Y, Cui J, Ge W, Zhang K. Molecular identification and functional verification of SPL9 and SPL15 of Lilium. Mol Genet Genomics 2022; 297:63-74. [PMID: 34779936 DOI: 10.1007/s00438-021-01832-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022]
Abstract
The transformation of plants from juveniles to adults is a key process in plant growth and development, and the main regulatory factors are miR156 and SQUAMOSA promoter binding protein-like (SPL) transcription factors. Lilium is an ornamental bulb, but it has a long maturation time. In this experiment, Lilium bulbs were subjected to a temperature treatment of 15 °C for 4 weeks to initiate vegetative phase change. Transmission electron microscopy indicated the cell wall of bud core tissue undergoing vegetative phase change became thinner, the starch grains were reduced, and the growth of the juvenile stage was accelerated. The key transcription factors LbrSPL9 and LbrSPL15 were cloned, and the phylogenetic analysis showed they possessed high homology with other plant SPLs. Subcellular localization and transcription activation experiments confirmed LbrSPL9 and LbrSPL15 were mainly located in the nucleus and exhibited transcriptional activity. The results of in situ hybridization showed the expression levels of LbrSPL9 and LbrSPL15 were increased after temperature change treatment. The functional verification experiment of the transgenic plants confirmed that the overexpression of LbrSPL9 and LbrSPL15 could shorten maturation time. These findings help elucidate the regulatory mechanisms of phase transition in Lilium and provide a reference for breeding research in other bulbous flowers.
Collapse
Affiliation(s)
- Mengna Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Rongxiu Liu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Yao Chen
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jinteng Cui
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China
| | - Wei Ge
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| | - Kezhong Zhang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- College of Landscape Architecture, Beijing University of Agriculture, Beijing, 102206, People's Republic of China.
- Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 102206, People's Republic of China.
| |
Collapse
|
5
|
He Y, Long L, Yan W, Dong L, Xia W, Li C, Li F. Establishment and Application of Ligation Reaction-Based Method for Quantifying MicroR-156b. FRONTIERS IN PLANT SCIENCE 2021; 12:794752. [PMID: 34970292 PMCID: PMC8713971 DOI: 10.3389/fpls.2021.794752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Microribonucleic acids (miRNAs) play significant roles in the regulation of biological processes and in responses to biotic or abiotic environmental stresses. Therefore, it is necessary to quantitatively detect miRNAs to understand these complicated biological regulation mechanisms. This study established an ultrasensitive and highly specific method for the quantitative detection of miRNAs using simple operations on the ground of the ligation reaction of ribonucleotide-modified deoxyribonucleic acid (DNA) probes. This method avoids the complex design of conventional reverse transcription. In the developed assay, the target miRNA miR156b was able to directly hybridize the two ribonucleotide-modified DNA probes, and amplification with universal primers was achieved following the ligation reaction. As a result, the target miRNA could be sensitively measured even at a detection limit as low as 0.0001 amol, and differences of only a single base could be detected between miR156 family members. Moreover, the proposed quantitative method demonstrated satisfactory results for overexpression-based genetically modified (GM) soybean. Ligation-based quantitative polymerase chain reaction (PCR) therefore has potential in investigating the biological functions of miRNAs, as well as in supervising activities regarding GM products or organisms.
Collapse
|
6
|
Su Z, Wang X, Xuan X, Sheng Z, Jia H, Emal N, Liu Z, Zheng T, Wang C, Fang J. Characterization and Action Mechanism Analysis of VvmiR156b/c/d-VvSPL9 Module Responding to Multiple-Hormone Signals in the Modulation of Grape Berry Color Formation. Foods 2021; 10:foods10040896. [PMID: 33921800 PMCID: PMC8073990 DOI: 10.3390/foods10040896] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/06/2021] [Accepted: 04/14/2021] [Indexed: 12/11/2022] Open
Abstract
In recent years, more and more reports have shown that the miR156-SPL module can participate in the regulation of anthocyanin synthesis in plants. However, little is known about how this module responds to hormonal signals manipulating this process in grapes. In this study, exogenous GA, ABA, MeJA, and NAA were used to treat the 'Wink' grape berries before color conversion, anthocyanin and other related quality physiological indexes (such as sugar, aroma) were determined, and spatio-temporal expression patterns of related genes were analyzed. The results showed that the expression levels of VvmiR156b/c/d showed a gradually rising trend with the ripening and color formation of grape berries, and the highest expression levels were detected at day 28 after treatment, while the expression level of VvSPL9 exhibited an opposite trend as a whole, which further verifies that VvmiR156b/c/d can negatively regulate VvSPL9. Besides, VvmiR156b/c/d was positively correlated with anthocyanin content and related genes levels, while the expression pattern of VvSPL9 showed a negative correlation. Analysis of promoter cis-elements and GUS staining showed that VvmiR156b/c/d contained a large number of hormone response cis-elements (ABA, GA, SA, MeJA, and NAA) and were involved in hormone regulation. Exogenous ABA and MeJA treatments significantly upregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early stage of color conversion and made grape berries quickly colored. Interestingly, GA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes in the early color-change period, but significantly upregulated in the middle color-change and ripening stages, therefore GA mainly modulated grape berry coloring in the middle- and late-ripening stages. Furthermore, NAA treatment downregulated the expression levels of VvmiR156b/c/d and anthocyanin structural genes and delayed the peak expression of genes. Meanwhile, to further recognize the potential functions of VvmiR156b/c/d, the mature tomato transient trangenetic system was utilized in this work. Results showed that transient overexpression of VvmiR156b/c/d in tomato promoted fruit coloring and overexpression of VvSPL9 inhibited fruit coloration. Finally, a regulatory network of the VvmiR156b/c/d-VvSPL9 module responsive to hormones modulating anthocyanin synthesis was developed. In conclusion, VvmiR156b/c/d-mediated VvSPL9 participated in the formation of grape color in response to multi-hormone signals.
Collapse
Affiliation(s)
- Ziwen Su
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
- Institute of Pomology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Xicheng Wang
- Institute of Pomology, Jiangsu Academy of Agricultural Science, Nanjing 210014, China;
| | - Xuxian Xuan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Zilu Sheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Haoran Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Naseri Emal
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Zhongjie Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
- Correspondence:
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Z.S.); (X.X.); (Z.S.); (H.J.); (N.E.); (Z.L.); (T.Z.); (J.F.)
| |
Collapse
|
7
|
Genome-Wide Identification of Copper Stress-Regulated and Novel MicroRNAs in Mulberry Leaf. Biochem Genet 2021; 59:589-603. [PMID: 33389282 DOI: 10.1007/s10528-020-10021-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/28/2020] [Indexed: 01/15/2023]
Abstract
Copper (Cu) is an essential trace element for plant growth and development. It is widely involved in respiration, photosynthesis, pollen formation, and other biological processes. Therefore, low or excessive copper causes damage to plants. Mulberry is an essential perennial economic tree. At present, research on the abiotic stress responses in mulberry is mainly focused on the identification of resistant germplasm resources and cloning of resistant genes. In contrast, studies on the resistance function of microRNAs and the regulatory gene responses to stress are rare. In this study, small RNA libraries (control and copper stressed) were constructed from mulberry leaf RNA. High-throughput sequencing and screening were employed, a total of 65 known miRNAs and 78 predicted novel mature miRNAs were identified, among which 40 miRNAs were differentially expressed under copper stress. Subsequently, expression patterns were verified for 14 miRNAs by real-time fluorescence quantitative PCR (qPCR). The target genes of miRNAs were validated by 5' RLM-RACE. Our results provide the bases for further study on the molecular mechanism of copper stress regulation in mulberry.
Collapse
|
8
|
Identification and Characterization of microRNAs in the Developing Seed of Linseed Flax ( Linum usitatissimum L.). Int J Mol Sci 2020; 21:ijms21082708. [PMID: 32295287 PMCID: PMC7215410 DOI: 10.3390/ijms21082708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 11/17/2022] Open
Abstract
Seed development plays an important role during the life cycle of plants. Linseed flax is an oil crop and the seed is a key organ for fatty acids synthesis and storage. So it is important to understand the molecular mechanism of fatty acid biosynthesis during seed development. In this study, four small RNA libraries from early seeds at 5, 10, 20 and 30 days after flowering (DAF) were constructed and used for high-throughput sequencing to identify microRNAs (miRNAs). A total of 235 miRNAs including 114 known conserved miRNAs and 121 novel miRNAs were identified. The expression patterns of these miRNAs in the four libraries were investigated by bioinformatics and quantitative real-time polymerase chain reaction (qPCR) analysis. It was found that several miRNAs, including Lus-miRNA156a was significantly correlated with seed development process. In order to confirm the actual biological function of Lus-miRNA156a, over-expression vector was constructed and transformed to Arabidopsis. The phenotypes of homozygous transgenic lines showed decreasing of oil content and most of the fatty acid content in seeds as well as late flowering time. The results provided a clue that miRNA156a participating the fatty acid biosynthesis pathway and the detailed molecular mechanism of how it regulates the pathway needs to be further investigated.
Collapse
|
9
|
Zhang W, Abdelrahman M, Jiu S, Guan L, Han J, Zheng T, Jia H, Song C, Fang J, Wang C. VvmiR160s/VvARFs interaction and their spatio-temporal expression/cleavage products during GA-induced grape parthenocarpy. BMC PLANT BIOLOGY 2019; 19:111. [PMID: 30898085 PMCID: PMC6429806 DOI: 10.1186/s12870-019-1719-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/14/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND Grape (Vitis vinifera) is highly sensitive to gibberellin (GA), which effectively induce grape parthenocarpy. Studies showed that miR160s and their target AUXIN RESPONSIVE FACTOR (ARF) responding hormones are indispensable for various aspects of plant growth and development, but their functions in GA-induced grape parthenocarpy remain elusive. RESULTS In this study, the morphological changes during flower development in response to GA treatments were examined in the 'Rosario Bianco' cultivar. The precise sequences of VvmiR160a/b/c/d/e and their VvARF10/16/17 target genes were cloned, sequenced and characterized. The phylogenetic relationship and intron-exon structure of VvARFs and other ARF family members derived from different species were investigated. All VvmiR160s (except VvmiR160b) and VvARF10/16/17 had the common cis-elements responsive to GA, which support their function in GA-mediated grape parthenocarpy. The cleavage role of VvmiR160s-mediated VvARF10/16/17 was verified in grape flowers. Moreover, spatio-temporal expression analysis demonstrated that among VvmiR160 family, VvmiR160a/b/c highly expressed at late stage of flower/berry development, while VvARF10/16/17showed a reverse expression trend. Interestingly, GA exhibited a long-term effect through inducing the expression of VvmiR160a/b/c/e to increase their cleavage product accumulations from 5 to 9 days after treatment, but GA enhanced the expressions of VvARF10/16/17 only at short term. Pearson correlation analysis based on expression data revealed a negative correlation between VvmiR160a/b/c and VvARF10/16/17 in flowers not berries during GA-induced grape parthenocarpy. CONCLUSIONS This work demonstrated that the negative regulation of VvARF10/16/17 expression by VvmiR160a/b/c as key regulatory factors is critical for GA-mediated grape parthenocarpy, and provide significant implications for molecular breeding of high-quality seedless berry.
Collapse
Affiliation(s)
- Wenying Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Mostafa Abdelrahman
- Department of Botany, Faculty of Sciences, Aswan University, Aswan, 81528 Egypt
- Arid Land Research Center, Tottori University, Tottori, 680-001 Japan
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Le Guan
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jian Han
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Ting Zheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Haifeng Jia
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Changnian Song
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Jinggui Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| | - Chen Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 China
| |
Collapse
|
10
|
Zhang Q, Zhang Y, Wang S, Hao L, Wang S, Xu C, Jiang F, Li T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. PLANTA 2019; 249:693-707. [PMID: 30368557 DOI: 10.1007/s00425-018-3027-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 10/04/2018] [Indexed: 06/08/2023]
Abstract
Using a genome-wide analysis of miRNAs in 'Yali' pear (Pyrus bretschneideri) via the next-generation high-throughput sequencing of small RNAs with a bioinformatics analysis, we found that pbr-miR156, pbr-miR164, pbr-miR399, and pbr-miR482 and their target genes function in viral defense in 'Duli' and 'Hongbaoshi'. pbr-miR160, pbr-miR168, pbr-miR171, and pbr-miR319 and their targets function in auxin signaling pathways in 'Zhongai 4' and 'Zhongai 5'. Successful fruit production in pear (Pyrus spp.) depends on the use of optimal combinations of rootstocks and scions. Deciphering plant-pathogen defense mechanisms and hormone signaling pathways is an important step towards developing pear rootstocks and varieties with improved qualities. In the current study, we combined next-generation sequencing of small RNAs with a bioinformatics analysis to systematically identify and characterize 298 miRNAs in the pear scion cultivar 'Yali' (Pyrus bretschneideri). We also analyzed miRNAs in three rootstock varieties ('Duli', 'Zhongai 4', and 'Zhongai 5') and one scion cultivar ('Hongbaoshi'). We found that pbr-miR156, pbr-miR164, pbr-miR399, and pbr-miR482 are induced following infection with the pear virus Apple stem pitting virus (ASPV), and identified their target genes (pbRPS6, pbNAC, pbTLR, and pbRX-CC, respectively), which participate in viral defense pathways in 'Duli' and 'Hongbaoshi'. Furthermore, we identified pbr-miR160, pbr-miR168, pbr-miR171, and pbr-miR319, and found that the production of these miRNAs was suppressed under low levels of synthetic auxin. The targets of these miRNAs (pbARF, pbAEC, pbSCL, and pbTCP4) respond to auxin signaling pathways in 'Zhongai 4' and 'Zhongai 5'. Our results lay the foundation for breeding improved pear cultivars.
Collapse
Affiliation(s)
- Qiulei Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Yi Zhang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengnan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Li Hao
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Shengyuan Wang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Chaoran Xu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China
| | - Feng Jiang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
11
|
Characterization of Vv-miR156: Vv-SPL pairs involved in the modulation of grape berry development and ripening. Mol Genet Genomics 2018; 293:1333-1354. [PMID: 29943289 DOI: 10.1007/s00438-018-1462-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
SPL is a plant-specific transcription factor family. Many researchers reported that SPL members targeted by miR156s could play crucial roles in the modulation of plant growth and development. Although there are similar reports on grapes, till now little is known about grape berry development and ripening. To gain more insight into how grape miR156s (Vv-miR156s) modulated the above given processes of grape berries by mediating their target gene Vv-SPLs, here we identified the precise sequences of Vv-miR156s in 'Giant Rose' grape berries, predicted their potential targets, and revealed that the matching degree of various Vv-miR156: Vv-SPL pairs exhibited some discrepancy, implying the divergence of their interaction. Subsequently, we also discovered similar motifs such as ABRE, CGTCA and ERE, which are more specific to berry development and ripening, within the promoters of both Vv-MIR156s and Vv-SPLs. With berry development and ripening, meanwhile, Vv-miR156a, b/c/d, e and f/g/i exhibited an overall increasing expression trend, while their targets showed opposite trends at the corresponding stages. Additionally, exogenous ABA and NAA application promoted or curbed the expression of Vv-miR156s to some extent, before grape berry ripening stage. The cleavage products, sites and frequencies of Vv-miR156a, b/c/d, e, f/g/i and their respective targets (Vv-SPL2, 9, 10, 16) during grape berry development and ripening process were validated by our developed PPM-RACE and modified RLM-RACE together with qRT-PCR, which demonstrated that Vv-miR156s can be involved in the modulation of grape berry development and ripening process by mediating the expression of Vv-SPL2, 9, 10, 16. Our findings lay an important foundation for further recognizing their functions in grape berries, and enrich the knowledge of the regulatory mechanism of miRNA-mediated grape berry development and ripening.
Collapse
|