1
|
Li Y, Fan W, Huang Y, Huang Y, Du X, Liu Z, Huang Y, Zhao Y. Comparison of morphology and genetic diversity between broodstock and hybrid offspring of oriental river prawn, Macrobrachium nipponense based on morphological analysis and SNP markers. Anim Genet 2021; 52:461-471. [PMID: 34047388 DOI: 10.1111/age.13081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/03/2021] [Indexed: 11/29/2022]
Abstract
Hybridization is an effective method for the genetic improvement of farmed species. In this study, three broodstock populations (Changjiang, CJ, Dongting, DT, and Dianshan, DS) of oriental river prawn, Macrobrachium nipponense were used, and DS was used as the female broodstock. Through three-line hybridization, two hybrid populations were finally obtained. The F3 generation of the broodstock population and the F1 generation of the hybrid population were cultured indoors for 3 months. Through morphological analysis (cluster analysis, discriminant analysis and path analysis) it was found that the hybrid population and the broodstock had some differences, but not enough to reach the subspecies level, and the dominant traits exhibited differentiation and reorganization. This study identified SNP genetic markers, carried out systematic evolution analysis and genetic diversity analysis and found that the nucleotide diversity π and heterozygosity Het of the hybrid population were higher than those of the broodstock. Among broodstocks, the differentiation index (Fst ) of SCD and SDC was smallest (0.055). This research provides some valuable reference for genetic breeding.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wujiang Fan
- Shanghai Fisheries Research Institute (Shanghai Fisheries Technology Promotion Station), Shanghai, 200433, China
| | - Yinying Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yingying Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China.,State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
2
|
Rahman S, Schmidt D, Hughes JM. Genetic structure of Australian glass shrimp, Paratya australiensis, in relation to altitude. PeerJ 2020; 8:e8139. [PMID: 31942250 PMCID: PMC6955102 DOI: 10.7717/peerj.8139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 11/01/2019] [Indexed: 11/29/2022] Open
Abstract
Paratya australiensis Kemp (Decapoda: Atyidae) is a widely distributed freshwater shrimp in eastern Australia. The species has been considered as an important stream organism for studying genetics, dispersal, biology, behaviour and evolution in atyids and is a major food source for stream dwelling fishes. Paratya australiensis is a cryptic species complex consisting of nine highly divergent mitochondrial DNA lineages. Previous studies in southeast Queensland showed that “lineage 4” favours upstream sites at higher altitudes, with cooler water temperatures. This study aims to identify putative selection and population structure between high elevation and low elevation populations of this lineage at relatively small spatial scales. Sample localities were selected from three streams: Booloumba Creek, Broken Bridge Creek and Obi Obi Creek in the Conondale Range, southeast Queensland. Six sample localities, consisting of 142 individuals in total were sequenced using double digest Restriction Site Associated DNA-sequencing (ddRAD-seq) technique. Among the 142 individuals, 131 individuals shared 213 loci. Outlier analysis on 213 loci showed that 27 loci were putatively under selection between high elevation and low elevation populations. Outlier analysis on individual streams was also done to test for parallel patterns of adaptation, but there was no evidence of a parallel pattern. Population structure was observed using both the 27 outliers and 186 neutral loci and revealed similar population structure in both cases. Therefore, we cannot differentiate between selection and drift here. The highest genetic differentiation was observed between high elevation and low elevation populations of Booloumba Creek, with small levels of differentiation in the other two streams.
Collapse
Affiliation(s)
- Sharmeen Rahman
- Griffith School of Environment and Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Daniel Schmidt
- Griffith School of Environment and Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| | - Jane M Hughes
- Griffith School of Environment and Australian Rivers Institute, Griffith University, Brisbane, QLD, Australia
| |
Collapse
|
3
|
Thurman TJ, Szejner-Sigal A, McMillan WO. Movement of a Heliconius hybrid zone over 30 years: A Bayesian approach. J Evol Biol 2019; 32:974-983. [PMID: 31216075 DOI: 10.1111/jeb.13499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/29/2019] [Accepted: 06/10/2019] [Indexed: 11/27/2022]
Abstract
Hybrid zones have long been of interest to biologists as natural laboratories where we can gain insight into the processes of adaptation and speciation. Repeated sampling of individual hybrid zones has been particularly useful in elucidating the dynamic balance between selection and dispersal that maintains most hybrid zones. Here, we revisit a hybrid zone between Heliconius erato butterflies in Panamá for a third time over more than 30 years. We combine a novel Bayesian extension of stepped-cline hybrid zone models with environmental data to understand the genetic and environmental causes of cline dynamics in this species. The cline has continued to move west, likely due to dominance drive, but has slowed and broadened. Environmental analyses suggest that widespread deforestation in Panamá could be leading to decreased avian predation and relaxed selection, causing the observed changes in cline dynamics.
Collapse
Affiliation(s)
- Timothy J Thurman
- Smithsonian Tropical Research Institute, Panamá, República de Panamá.,Redpath Museum and Department of Biology, McGill University, Montréal, Québec, Canada
| | - Andre Szejner-Sigal
- Smithsonian Tropical Research Institute, Panamá, República de Panamá.,Department of Integrative Biology, University of California, Berkeley, Berkeley, CA, USA
| | - W Owen McMillan
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| |
Collapse
|