1
|
Zahra A, Kayani S, Shahzad A, Sert TD, Ozcelik H, Qin M, Naeem M, Billah M. Wood biochar induced metal tolerance in Maize (Zea mays L.) plants under heavy metal stress. ENVIRONMENTAL RESEARCH 2024; 262:119940. [PMID: 39243839 DOI: 10.1016/j.envres.2024.119940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Due to metal toxicity, widespread industrialization has negatively impacted crop yield and soil quality. The current study was aimed to prepare and characterize biochar made from wood shavings of Pinus roxburghii and to determine the plant growth promoting and heavy metal detoxification of cadmium (Cd) and chromium (Cr) contaminated soil. FTIR SEM coupled with EDX characterization of biochar was performed; Cd and Cr were used at a rate of 20 mg/kg. Biochar was used at the rate of 50 mg/kg for various treatments. The completely randomized design (CRD) was used for the experiment and three replicates of each treatment were made. Various agronomic and enzymatic parameters were determined. The results indicated that all growth and enzymatic parameters were enhanced by the prepared biochar treatments. The most prominent results were observed in treatment T5 (in which shoot length, root length, peroxidase dismutase (POD), superoxide dismutase (SOD) catalyzes (CAT), and chlorophyll a and b increased by 28%, 23%, 40%, 41%, 42%, and 27%, respectively, compared to the control). This study demonstrated that biochar is a sustainable and cost-effective approach for the remediation of heavy metals, and plays a role in plant growth promotion. Farmers may benefit from the current findings, as prepared biochar is easier to deliver and more affordable than chemical fertilizers. Future research could clarify how to use biochar optimally, applying the minimum amount necessary while maximizing its benefits and increasing yield.
Collapse
Affiliation(s)
- Atiqa Zahra
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Sadaf Kayani
- Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan; Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Asim Shahzad
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China; Department of Botany, Mohi-ud-Din Islamic University, Nerian Sharif, 12080, Azad Jammu and Kashmir, Pakistan.
| | - Tijen Demiral Sert
- Department of Biology, Faculty of Engineering and Natural Science, Suleyman Demiral University, East Campus, Isparta, Turkiye.
| | - Hasan Ozcelik
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Mingzhou Qin
- College of Geography and Environmental Sciences, Henan University, Jinming Ave, Kaifeng, 475004, China.
| | - Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| | - Motsim Billah
- Directorate of ORIC, Rawalpindi Women University, Rawalpindi, Pakistan.
| |
Collapse
|
2
|
Jarboe LR, Khalid A, Rodriguez Ocasio E, Noroozi KF. Extrapolation of design strategies for lignocellulosic biomass conversion to the challenge of plastic waste. J Ind Microbiol Biotechnol 2022; 49:kuac001. [PMID: 35040946 PMCID: PMC9119000 DOI: 10.1093/jimb/kuac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/12/2022]
Abstract
The goal of cost-effective production of fuels and chemicals from biomass has been a substantial driver of the development of the field of metabolic engineering. The resulting design principles and procedures provide a guide for the development of cost-effective methods for degradation, and possibly even valorization, of plastic wastes. Here, we highlight these parallels, using the creative work of Lonnie O'Neal (Neal) Ingram in enabling production of fuels and chemicals from lignocellulosic biomass, with a focus on ethanol production as an exemplar process.
Collapse
Affiliation(s)
- Laura R Jarboe
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Ammara Khalid
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Efrain Rodriguez Ocasio
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Kimia Fashkami Noroozi
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|