1
|
Bozkurt EU, Ørsted EC, Volke DC, Nikel PI. Accelerating enzyme discovery and engineering with high-throughput screening. Nat Prod Rep 2024. [PMID: 39403004 DOI: 10.1039/d4np00031e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to August 2024Enzymes play an essential role in synthesizing value-added chemicals with high specificity and selectivity. Since enzymes utilize substrates derived from renewable resources, biocatalysis offers a pathway to an efficient bioeconomy with reduced environmental footprint. However, enzymes have evolved over millions of years to meet the needs of their host organisms, which often do not align with industrial requirements. As a result, enzymes frequently need to be tailored for specific industrial applications. Combining enzyme engineering with high-throughput screening has emerged as a key approach for developing novel biocatalysts, but several challenges are yet to be addressed. In this review, we explore emergent strategies and methods for isolating, creating, and characterizing enzymes optimized for bioproduction. We discuss fundamental approaches to discovering and generating enzyme variants and identifying those best suited for specific applications. Additionally, we cover techniques for creating libraries using automated systems and highlight innovative high-throughput screening methods that have been successfully employed to develop novel biocatalysts for natural product synthesis.
Collapse
Affiliation(s)
- Eray U Bozkurt
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Emil C Ørsted
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark.
| |
Collapse
|
2
|
Hu L, Luo R, Wang D, Lin F, Xiao K, Kang Y. SERS-based microdroplet platform for high-throughput screening of Escherichia coli strains for the efficient biosynthesis of D-phenyllactic acid. Front Bioeng Biotechnol 2024; 12:1470830. [PMID: 39372433 PMCID: PMC11449890 DOI: 10.3389/fbioe.2024.1470830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/09/2024] [Indexed: 10/08/2024] Open
Abstract
D-Phenyllactic acid (D-PLA) is a potent antimicrobial typically synthesized through chemical methods. However, due to the complexity and large pollution of these reactions, a simpler and more eco-friendly approach was needed. In this study, a strain for D-PLA biosynthesis was constructed, but the efficiency was restricted by the activity of D-lactate dehydrogenase (DLDH). To address this issue, a DLDH mutant library was constructed and the Surface-Enhanced Raman Spectroscopy (SERS) was employed for the precise quantification of D-PLA at the single-cell level. The TB24 mutant exhibited a significant improvement in D-PLA productivity and a 23.03-fold increase in enzymatic activity, which was attributed to the enhanced hydrogen bonding and increased hydrophobicity within the substrate-binding pocket. By implementing multi-level optimization strategies, including the co-expression of glycerol dehydrogenase (GlyDH) with DLDH, chassis cell replacement, and RBS engineering, a significant increase in D-PLA yields was achieved, reaching 128.4 g/L. This study underscores the effectiveness of SERS-based microdroplet high-throughput screening (HTS) in identifying superior mutant enzymes and offers a strategy for large-scale D-PLA biotransformation.
Collapse
Affiliation(s)
| | | | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, China
| | | | | | | |
Collapse
|
3
|
Hartmann FSF, Grégoire M, Renzi F, Delvigne F. Single cell technologies for monitoring protein secretion heterogeneity. Trends Biotechnol 2024; 42:1144-1160. [PMID: 38480024 DOI: 10.1016/j.tibtech.2024.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 09/07/2024]
Abstract
Cell-to-cell heterogeneity presents challenges across various fields, from biomedicine to bioproduction, where precise cellular responses are vital. While single cell technologies have significantly enhanced our understanding of population heterogeneity, the predominant focus has been on monitoring intracellular compounds. Recognizing the added complexity introduced by the secretion system, in this review, we first provide a systematic overview of the distinct steps necessary for driving protein secretion. We discuss the various sources of noise acting from the synthesized preprotein to the secretory protein released based on a Gram-positive cellular system as a model. We next explore the applicability of single cell technologies for monitoring protein secretion throughout these functional stages. We also emphasize the importance of applying these single cell technologies for monitoring protein secretion during bioproduction.
Collapse
Affiliation(s)
- Fabian Stefan Franz Hartmann
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
| | - Mélanie Grégoire
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium; Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Francesco Renzi
- Research Unit in Biology of Microorganisms (URBM), Biology Department, Narilis, University of Namur, Namur, Belgium
| | - Frank Delvigne
- Terra Research and Teaching Centre, Microbial Processes and Interactions (MiPI), Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium.
| |
Collapse
|
4
|
Sahu N, Mahanty B, Haldar D. Challenges and opportunities in bioprocessing of gellan gum: A review. Int J Biol Macromol 2024; 276:133912. [PMID: 39025193 DOI: 10.1016/j.ijbiomac.2024.133912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/26/2024] [Accepted: 07/14/2024] [Indexed: 07/20/2024]
Abstract
Gellan gum (GG) - the microbial exopolysaccharide is increasingly being adopted into drug development, tissue engineering, and food and pharmaceutical products. In spite of the commercial importance and expanding application horizon of GG, little attention has been directed toward the exploration of novel microbial cultures, development of advanced screening protocols, strain engineering, and robust upstream or downstream processes. This comprehensive review not only attempts to summarize the existing knowledge pool on GG bioprocess but also critically assesses their inherent challenges. The process optimization design augmented with advanced machine learning modeling tools, widely adopted in other microbial bioprocesses, should be extended to GG. The unification of mechanistic insight into data-driven modeling would help to formulate optimal feeding and process control strategies.
Collapse
Affiliation(s)
- Nageswar Sahu
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Biswanath Mahanty
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| | - Dibyajyoti Haldar
- Division of Biotechnology, School of Agricultural Sciences, Karunya Institute of Technology and Sciences, Coimbatore 641114, Tamil Nadu, India.
| |
Collapse
|
5
|
Leal-Alves C, Deng Z, Kermeci N, Shih SCC. Integrating microfluidics and synthetic biology: advancements and diverse applications across organisms. LAB ON A CHIP 2024; 24:2834-2860. [PMID: 38712893 DOI: 10.1039/d3lc01090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Synthetic biology is the design and modification of biological systems for specific functions, integrating several disciplines like engineering, genetics, and computer science. The field of synthetic biology is to understand biological processes within host organisms through the manipulation and regulation of their genetic pathways and the addition of biocontrol circuits to enhance their production capabilities. This pursuit serves to address global challenges spanning diverse domains that are difficult to tackle through conventional routes of production. Despite its impact, achieving precise, dynamic, and high-throughput manipulation of biological processes is still challenging. Microfluidics offers a solution to those challenges, enabling controlled fluid handling at the microscale, offering lower reagent consumption, faster analysis of biochemical reactions, automation, and high throughput screening. In this review, we diverge from conventional focus on automating the synthetic biology design-build-test-learn cycle, and instead, focus on microfluidic platforms and their role in advancing synthetic biology through its integration with host organisms - bacterial cells, yeast, fungi, animal cells - and cell-free systems. The review illustrates how microfluidic devices have been instrumental in understanding biological systems by showcasing microfluidics as an essential tool to create synthetic genetic circuits, pathways, and organisms within controlled environments. In conclusion, we show how microfluidics expedite synthetic biology applications across diverse domains including but not limited to personalized medicine, bioenergy, and agriculture.
Collapse
Affiliation(s)
- Chiara Leal-Alves
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Zhiyang Deng
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
| | - Natalia Kermeci
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| | - Steve C C Shih
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada.
- Department of Electrical and Computer Engineering, Concordia University, 1515 Ste-Catherine St. W, Montréal, QC, H3G1M8 Canada
- Department of Biology, Concordia University, 7141 Sherbrooke St. W, Montréal, QC, H4B1R6 Canada
| |
Collapse
|
6
|
Zhao X, Kolbinger FR, Distler M, Weitz J, Makarov D, Bachmann M, Baraban L. Portable droplet-based real-time monitoring of pancreatic α-amylase in postoperative patients. Biosens Bioelectron 2024; 251:116034. [PMID: 38359666 DOI: 10.1016/j.bios.2024.116034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/21/2023] [Accepted: 01/11/2024] [Indexed: 02/17/2024]
Abstract
Postoperative complications after pancreatic surgery are frequent and can be life-threatening. Current clinical diagnostic strategies involve time-consuming quantification of α-amylase activity in abdominal drain fluid, which is performed on the first and third postoperative day. The lack of real-time monitoring may delay adjustment of medical treatment upon complications and worsen prognosis for patients. We report a bedside portable droplet-based millifluidic device enabling real-time sensing of drain α-amylase activity for postoperative monitoring of patients undergoing pancreatic surgery. Here, a tiny amount of drain liquid of patient samples is continuously collected and co-encapsulated with a starch reagent in nanoliter-sized droplets to track the fluorescence intensity released upon reaction with α-amylase. Comparing the α-amylase levels of 32 patients, 97 % of the results of the droplet-based millifluidic system matched the clinical data. Our method reduces the α-amylase assay duration to approximately 3 min with the limit of detection 7 nmol/s·L, enabling amylase activity monitoring at the bedside in clinical real-time. The presented droplet-based platform can be extended for analysis of different body fluids, diseases, and towards a broader range of biomarkers, including lipase, bilirubin, lactate, inflammation, or liquid biopsy markers, paving the way towards new standards in postoperative patient monitoring.
Collapse
Affiliation(s)
- Xinne Zhao
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Fiona R Kolbinger
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany.
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany
| | - Jürgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital and Faculty of Medicine Carl Gustav. Carus, TUD Dresden University of Technology, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany
| | - Denys Makarov
- Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Michael Bachmann
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany.
| | - Larysa Baraban
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf e. V, 01328, Dresden, Germany; Else Kröner Fresenius Center for Digital Health (EKFZ), TUD Dresden University of Technology, Germany.
| |
Collapse
|
7
|
Lou C, Yang H, Hou Y, Huang H, Qiu J, Wang C, Sang Y, Liu H, Han L. Microfluidic Platforms for Real-Time In Situ Monitoring of Biomarkers for Cellular Processes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307051. [PMID: 37844125 DOI: 10.1002/adma.202307051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/05/2023] [Indexed: 10/18/2023]
Abstract
Cellular processes are mechanisms carried out at the cellular level that are aimed at guaranteeing the stability of the organism they comprise. The investigation of cellular processes is key to understanding cell fate, understanding pathogenic mechanisms, and developing new therapeutic technologies. Microfluidic platforms are thought to be the most powerful tools among all methodologies for investigating cellular processes because they can integrate almost all types of the existing intracellular and extracellular biomarker-sensing methods and observation approaches for cell behavior, combined with precisely controlled cell culture, manipulation, stimulation, and analysis. Most importantly, microfluidic platforms can realize real-time in situ detection of secreted proteins, exosomes, and other biomarkers produced during cell physiological processes, thereby providing the possibility to draw the whole picture for a cellular process. Owing to their advantages of high throughput, low sample consumption, and precise cell control, microfluidic platforms with real-time in situ monitoring characteristics are widely being used in cell analysis, disease diagnosis, pharmaceutical research, and biological production. This review focuses on the basic concepts, recent progress, and application prospects of microfluidic platforms for real-time in situ monitoring of biomarkers in cellular processes.
Collapse
Affiliation(s)
- Chengming Lou
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hongru Yang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Ying Hou
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Haina Huang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Chunhua Wang
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
- Institute for Advanced Interdisciplinary Research (IAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266000, P. R. China
| |
Collapse
|
8
|
He Y, Qiao Y, Ding L, Cheng T, Tu J. Recent advances in droplet sequential monitoring methods for droplet sorting. BIOMICROFLUIDICS 2023; 17:061501. [PMID: 37969470 PMCID: PMC10645479 DOI: 10.1063/5.0173340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/23/2023] [Indexed: 11/17/2023]
Abstract
Droplet microfluidics is an attractive technology to run parallel experiments with high throughput and scalability while maintaining the heterogeneous features of individual samples or reactions. Droplet sorting is utilized to collect the desired droplets based on droplet characterization and in-droplet content evaluation. A proper monitoring method is critical in this process, which governs the accuracy and maximum frequency of droplet handling. Until now, numerous monitoring methods have been integrated in the microfluidic devices for identifying droplets, such as optical spectroscopy, mass spectroscopy, electrochemical monitoring, and nuclear magnetic resonance spectroscopy. In this review, we summarize the features of various monitoring methods integrated into droplet sorting workflow and discuss their suitable condition and potential obstacles in use. We aim to provide a systematic introduction and an application guide for choosing and building a droplet monitoring platform.
Collapse
Affiliation(s)
- Yukun He
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yi Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Lu Ding
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Tianguang Cheng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Jing Tu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
9
|
Xu F, Liu C, Xia M, Li S, Tu R, Wang S, Jin H, Zhang D. Characterization of a Riboflavin-Producing Mutant of Bacillus subtilis Isolated by Droplet-Based Microfluidics Screening. Microorganisms 2023; 11:microorganisms11041070. [PMID: 37110496 PMCID: PMC10146818 DOI: 10.3390/microorganisms11041070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/24/2023] [Indexed: 04/29/2023] Open
Abstract
Bacillus subtilis is one of the commonly used industrial strains for riboflavin production. High-throughput screening is useful in biotechnology, but there are still an insufficient number of articles focusing on improving the riboflavin production of B. subtilis by this powerful tool. With droplet-based microfluidics technology, single cells can be encapsulated in droplets. The screening can be carried out by detecting the fluorescence intensity of secreted riboflavin. Thus, an efficient and high-throughput screening method suitable for riboflavin production strain improvement could be established. In this study, droplet-based microfluidics screening was applied, and a more competitive riboflavin producer U3 was selected from the random mutation library of strain S1. The riboflavin production and biomass of U3 were higher than that of S1 in flask fermentation. In addition, the results of fed-batch fermentation showed that the riboflavin production of U3 was 24.3 g/L, an 18% increase compared with the parent strain S1 (20.6 g/L), and the yield (g riboflavin/100 g glucose) increased by 19%, from 7.3 (S1) to 8.7 (U3). Two mutations of U3 (sinRG89R and icdD28E) were identified through whole genome sequencing and comparison. Then they were introduced into BS168DR (parent of S1) for further analysis, which also caused riboflavin production to increase. This paper provides protocols for screening riboflavin-producing B. subtilis with droplet-based microfluidics technology and reveals mutations in riboflavin overproduction strains.
Collapse
Affiliation(s)
- Fan Xu
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300131, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chuan Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miaomiao Xia
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Shixin Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- School of Biological Engineering, Tianjin University of Science and Technology, Tianjin 300222, China
| | - Ran Tu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Sijia Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Hongxing Jin
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300131, China
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Zhang Z, Guo Q, Wang Y, Huang H. High-throughput screening of microbial strains in large-scale microfluidic droplets. Front Bioeng Biotechnol 2023; 11:1105277. [PMID: 36970622 PMCID: PMC10037112 DOI: 10.3389/fbioe.2023.1105277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
The transformation of engineered microbial cells is a pivotal link in green biomanufacturing. Its distinctive research application involves genetic modification of microbial chassis to impart targeted traits and functions for effective synthesis of the desired products. Microfluidics, as an emerging complementary solution, focuses on controlling and manipulating fluid in channels at the microscopic scale. One of its subcategories is droplet-based microfluidics (DMF), which can generate discrete droplets using immiscible multiphase fluids at kHz frequencies. To date, droplet microfluidics has been successfully applied to a variety of microbes, including bacteria, yeast, and filamentous fungi, and the detection of massive metabolites of strain products, such as polypeptides, enzymes, and lipids, has been realized. In summary, we firmly believe that droplet microfluidics has evolved into a powerful technology that will pave the way for high-throughput screening of engineered microbial strains in the green biomanufacturing industry.
Collapse
Affiliation(s)
- Zhidong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi, Xinjiang, China
| | - Qi Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Yuetong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Yuetong Wang, ; He Huang,
| | - He Huang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Yuetong Wang, ; He Huang,
| |
Collapse
|
11
|
Shi TQ, Darvishi F, Cao M, Ji B, Ji XJ. Editorial: Design and construction of microbial cell factories for the production of fuels and chemicals. Front Bioeng Biotechnol 2023; 11:1198317. [PMID: 37152641 PMCID: PMC10154672 DOI: 10.3389/fbioe.2023.1198317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 04/11/2023] [Indexed: 05/09/2023] Open
Affiliation(s)
- Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Farshad Darvishi
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
- Research Center for Applied Microbiology and Microbial Biotechnology (CAMB), Alzahra University, Tehran, Iran
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Mingfeng Cao
- College of Chemistry and Chemical Engineering, Xiamen University, Fujian, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Boyang Ji
- BioInnovation InstituteCopenhagen, Denmark
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- *Correspondence: Tian-Qiong Shi, ; Farshad Darvishi, , ; Mingfeng Cao, ; Boyang Ji, ; Xiao-Jun Ji,
| |
Collapse
|
12
|
Li B, Ma X, Cheng J, Tian T, Guo J, Wang Y, Pang L. Droplets microfluidics platform-A tool for single cell research. Front Bioeng Biotechnol 2023; 11:1121870. [PMID: 37152651 PMCID: PMC10154550 DOI: 10.3389/fbioe.2023.1121870] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
Cells are the most basic structural and functional units of living organisms. Studies of cell growth, differentiation, apoptosis, and cell-cell interactions can help scientists understand the mysteries of living systems. However, there is considerable heterogeneity among cells. Great differences between individuals can be found even within the same cell cluster. Cell heterogeneity can only be clearly expressed and distinguished at the level of single cells. The development of droplet microfluidics technology opens up a new chapter for single-cell analysis. Microfluidic chips can produce many nanoscale monodisperse droplets, which can be used as small isolated micro-laboratories for various high-throughput, precise single-cell analyses. Moreover, gel droplets with good biocompatibility can be used in single-cell cultures and coupled with biomolecules for various downstream analyses of cellular metabolites. The droplets are also maneuverable; through physical and chemical forces, droplets can be divided, fused, and sorted to realize single-cell screening and other related studies. This review describes the channel design, droplet generation, and control technology of droplet microfluidics and gives a detailed overview of the application of droplet microfluidics in single-cell culture, single-cell screening, single-cell detection, and other aspects. Moreover, we provide a recent review of the application of droplet microfluidics in tumor single-cell immunoassays, describe in detail the advantages of microfluidics in tumor research, and predict the development of droplet microfluidics at the single-cell level.
Collapse
Affiliation(s)
- Bixuan Li
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Xi Ma
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jianghong Cheng
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Tian Tian
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Jiao Guo
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| | - Yang Wang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
- *Correspondence: Yang Wang,
| | - Long Pang
- Xi’an Key Laboratory of Pathogenic Microorganism and Tumor Immunity, Xi’an, China
- School of Basic Medicine, Xi’an Medical University, Xi’an, China
| |
Collapse
|