1
|
Alves VF, Tadielo LE, Pires ACMDS, Pereira MG, Bersot LDS, De Martinis ECP. Hidden Places for Foodborne Bacterial Pathogens and Novel Approaches to Control Biofilms in the Meat Industry. Foods 2024; 13:3994. [PMID: 39766937 PMCID: PMC11675819 DOI: 10.3390/foods13243994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/02/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
Biofilms are of great concern for the meat industry because, despite the implementation of control plans, they remain important hotspots of contamination by foodborne pathogens, highlighting the need to better understand the ecology of these microecosystems. The objective of this paper was to critically survey the recent scientific literature on microbial biofilms of importance for meat safety and quality, also pointing out the most promising methods to combat them. For this, the databases PubMed, Scopus, Science Direct, Web of Science, and Google Scholar were surveyed in a 10-year time frame (but preferably papers less than 5 years old) using selected keywords relevant for the microbiology of meats, especially considering bacteria that are tolerant to cleaning and sanitization processes. The literature findings showed that massive DNA sequencing has deeply impacted the knowledge on the species that co-habit biofilms with important foodborne pathogens (Listeria monocytogenes, Salmonella, pathogenic Escherichia coli, and Staphylococcus aureus). It is likely that recalcitrant commensal and/or spoilage microbiota somehow protect the more fastidious organisms from harsh conditions, in addition to harboring antimicrobial resistance genes. Among the members of background microbiota, Pseudomonas, Acinetobacter, and Enterobacteriales have been commonly found on food contact and non-food contact surfaces in meat processing plants, in addition to less common genera, such as Psychrobacter, Enhydrobacter, Brevundimonas, and Rothia, among others. It has been hypothesized that these rare taxa may represent a primary layer in microbial biofilms, offering better conditions for the adhesion of otherwise poor biofilm formers, especially considering their tolerance to cold conditions and sanitizers. Taking into consideration these findings, it is not only important to target the foodborne pathogens per se in cleaning and disinfection plans but the use of multiple hurdles is also recommended to dismantle the recalcitrant structures of biofilms. In this sense, the last part of this manuscript presents an updated overview of the antibiofilm methods available, with an emphasis on eco-friendly approaches.
Collapse
Affiliation(s)
| | - Leonardo Ereno Tadielo
- Department of Animal Production and Food, State University of Santa Catarina, Lages 88040-900, Brazil;
| | | | - Marita Gimenez Pereira
- Ribeirão Preto School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-220, Brazil; (A.C.M.d.S.P.); (M.G.P.)
| | | | | |
Collapse
|
2
|
Vignesh K, Sujithra S, Vajjiravel M, Narenkumar J, Das B, AlSalhi MS, Devanesan S, Rajasekar A, Malik T. Synthesis of novel N-substituted tetrabromophthalic as corrosion inhibitor and its inhibition of microbial influenced corrosion in cooling water system. Sci Rep 2024; 14:25408. [PMID: 39455801 PMCID: PMC11511875 DOI: 10.1038/s41598-024-76254-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
This study investigates the efficacy of newly synthesized inhibitor with a dual function of corrosion inhibition and biocide for control of microbial influenced corrosion (MIC) in carbon steel API 5LX in the cooling tower water (CTW) environment. Four types of N-substituted tetrabromophthalic inhibitor (N-TBI) were synthesized, and the structural characterization was performed via proton nuclear magnetic resonance spectroscopy, thermogravimetric analysis and high-resolution mass spectrometry. These studies revealed the distinctive optical, thermal, and dielectric properties of the synthesized inhibitors. The corrosion inhibition efficiency has been evaluated by the weight loss (WL) analysis and electrochemical measurements (ECM) and biofilm assay. Biofilm assays and WL showed that inhibitor II exhibited the highest inhibition efficiency 74% and 79% respectively than others. Further ECM showed that the higher charge transfer resistance and the lower corrosion current, suggesting a protective film formed on the metal surface which was due to the adsorption of the N-TBI. Fourier transform infrared spectroscopy confirmed the adsorption of the N-TBI as C-O stretching and C-H bending with the Fe complex. X-ray diffractometer revealed that the presence of inhibitors in the corrosion product (Fe3O4, Fe2O3, FeH2O2, FeS) were highly reduced than the control system. Overall, this study highlighted the potential application of N-TBI with dual function of corrosion inhibition and biocide to control the MIC for carbon steel API 5LX used in the CTW environment.
Collapse
Affiliation(s)
- Krishnan Vignesh
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632115, India
| | - Sankar Sujithra
- Department of Chemistry, School of Physical and Chemical Sciences, B S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600 048, India
| | - Murugesan Vajjiravel
- Department of Chemistry, School of Physical and Chemical Sciences, B S Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, 600 048, India
| | - Jayaraman Narenkumar
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Bhaskar Das
- Department of Environmental and Water Resources Engineering, School of Civil Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkadu, Vellore, Tamil Nadu, 632115, India.
| | - Tabarak Malik
- Department of Biomedical Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Division of Research and Development, Lovely Professional University, Phagwara, 144411, Punjab , India.
| |
Collapse
|
3
|
Veras FF, Stincone P, Welke JE, Ritter AC, Siqueira FM, Varela APM, Mayer FQ, Brandelli A. Genome analysis of Pseudomonas strain 4B with broad antagonistic activity against toxigenic fungi. Braz J Microbiol 2024; 55:269-280. [PMID: 38228937 PMCID: PMC10920548 DOI: 10.1007/s42770-024-01253-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pseudomonas sp. 4B isolated from the effluent pond of a bovine abattoir was investigated as antifungal against toxigenic fungi. The complete genome of Pseudomonas 4B was sequenced using the Illumina MiSeq platform. Phylogenetic analysis and genome comparisons indicated that the strain belongs to the Pseudomonas aeruginosa group. In silico investigation revealed gene clusters associated with the biosynthesis of several antifungals, including pyocyanin, rhizomide, thanamycin, and pyochelin. This bacterium was investigated through antifungal assays, showing an inhibitory effect against all toxigenic fungi tested. Bacterial cells reduced the diameter of fungal colonies, colony growth rate, and sporulation of each indicator fungi in 10-day simultaneous growing tests. The co-incubation of bacterial suspension and fungal spores in yeast extract-sucrose broth for 48 h resulted in reduced spore germination. During simultaneous growth, decreased production of aflatoxin B1 and ochratoxin A by Aspergillus flavus and Aspergillus carbonarius, respectively, was observed. Genome analysis and in vitro studies showed the ability of P. aeruginosa 4B to reduce fungal growth parameters and mycotoxin levels, indicating the potential of this bacterium to control toxigenic fungi. The broad antifungal activity of this strain may represent a sustainable alternative for the exploration and subsequent use of its possible metabolites in order to control mycotoxin-producing fungi.
Collapse
Affiliation(s)
- Flávio Fonseca Veras
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Paolo Stincone
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Ana Carolina Ritter
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Clínica Veterinária, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | | | - Fabiana Quoos Mayer
- Departamento de Biologia Molecular E Biotecnologia, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Adriano Brandelli
- Departamento de Ciência de Alimentos, Instituto de Ciência E Tecnologia de Alimentos, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil.
| |
Collapse
|