1
|
Zhu S, Shaheen T, Li R, Pei P, Zhao X, Li Y, Li F, Tang G. Transcriptome analysis and identification of sex pheromone biosynthesis and transport related genes in Atrijuglans hetaohei (Lepidoptera: Gelechioidea). INSECT MOLECULAR BIOLOGY 2022; 31:273-285. [PMID: 34923695 DOI: 10.1111/imb.12757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/19/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Atrijuglans hetaohei Yang (Lepidoptera: Gelechioidea) is one of the major pests that can seriously damage the walnut tree, leading to harvest loss. Sex pheromones regulate mating communication and reproduction in insects and provide targets for developing a novel pest control strategy. In this study, by transcriptomic sequencing and analysis of the female pheromone gland (PG) and male genitalia of A. hetaohei, we identified 92 putative genes, of which 7 desaturases (Dess), 8 fatty acyl reductases (FARs), 4 fatty acid synthetases (FASs), 2 aldehyde oxidases (AOXs), 4 acetyltransferases (ACTs), 1 chemosensory protein (CSP), and 2 odorant-binding proteins (OBPs) were predominantly expressed in the female PG, while 5 Dess, 11 FARs, 7 FASs, 6 AOXs, 1 ACT, and 1 CSP showed more robust expression in the male genitalia. Moreover, phylogenetic analysis revealed that 7 Dess and 1 FAR were grouped with genes involved in pheromone synthesis in other Lepidoptera species. Thus, we proposed that these candidate genes are possibly involved in the sex pheromone biosynthetic pathway in A. hetaohei. Our findings will provide a solid genetic basis for further exploring the function of the tissue-biased genes and may be useful to screen potential targets for interfering chemical communication in A. hetaohei.
Collapse
Affiliation(s)
- Shuying Zhu
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Tayyab Shaheen
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Rong Li
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Pei Pei
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Xing Zhao
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Li
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Feifei Li
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| | - Guanghui Tang
- College of Forestry, Key Laboratory of National Forestry and Grassland Administration on Management of Forest Bio-Disaster, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Xia YH, Ding BJ, Dong SL, Wang HL, Hofvander P, Löfstedt C. Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biol 2022; 20:80. [PMID: 35361182 PMCID: PMC8969271 DOI: 10.1186/s12915-022-01281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. RESULTS In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. CONCLUSIONS Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
Collapse
Affiliation(s)
- Yi-Han Xia
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 4, SE-41296, Gothenburg, Sweden
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, CN-210095, China
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden.
| |
Collapse
|
3
|
Xing Y, Thanasirungkul W, Aslam A, Niu F, Guo HR, Chi DF. Genes involved in the Type I pheromone biosynthesis pathway and chemoreception from the sex pheromone gland transcriptome of Dioryctria abietella. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2021; 40:100892. [PMID: 34428712 DOI: 10.1016/j.cbd.2021.100892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/31/2021] [Accepted: 08/03/2021] [Indexed: 11/15/2022]
Abstract
Dioryctria abietella is a coniferous seed orchard pest that can damage a series of host plants and cause huge losses to the forest economy. Sex pheromones play an important role in lepidopteran sex communication for reproduction and can be used as biological control agents to monitor and trap pests. However, the genes involved in the biosynthesis, transportation, and degradation of D. abietella sex pheromones have not been studied extensively. Transcriptome analysis of female D. abietella sex pheromone glands (PGs) revealed that 210 candidate genes might be involved in sex pheromone biosynthesis (139 genes) and chemoreception systems (71 genes). The gene expression patterns exhibited four desaturase genes (DabiDES4-7) and one fatty acid reductase gene (DabiFAR6), which were more highly expressed in sex pheromone glands than in other tissues, suggesting that these enzymes play an important role in D. abietella sex pheromone synthesis. In addition, most DabiOBPs showed high expression in antennae, but only DabiOBP4 exhibited specific expression in sex pheromone glands, suggesting that they may play many physiological roles in D. abietella. We put forth a reasonable hypothesis about type I pheromone biosynthesis pathways based on these genes identified in the D. abietella sex pheromone gland transcriptome. Our findings lay a foundation for population monitoring, mating disruption, mass trapping, and the development of ecologically acceptable management strategies.
Collapse
Affiliation(s)
- Ya Xing
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Wariya Thanasirungkul
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Asad Aslam
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Fang Niu
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - Hong-Ru Guo
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China
| | - De-Fu Chi
- Key Laboratory for Sustainable Forest Ecosystem Management-Ministry of Education, College of Forestry, Northeast Forestry University, Harbin 150040, Heilongjiang, People's Republic of China.
| |
Collapse
|
4
|
Lassance JM, Ding BJ, Löfstedt C. Evolution of the codling moth pheromone via an ancient gene duplication. BMC Biol 2021; 19:83. [PMID: 33892710 PMCID: PMC8063362 DOI: 10.1186/s12915-021-01001-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Diversification among fatty acid desaturase (FAD) genes has played a fundamental role in the introduction of structural variation in fatty acyl derivatives. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Here we used the codling moth (Cydia pomonella) as a study system to decipher the proximate mechanism underlying the production of the ∆8∆10 signature structure of olethreutine moths. Biosynthesis of the codling moth sex pheromone, (E8,E10)-dodecadienol (codlemone), involves two consecutive desaturation steps, the first of which is unusual in that it generates an E9 unsaturation. The second step is also atypical: it generates a conjugated diene system from the E9 monoene C12 intermediate via 1,4-desaturation. RESULTS Here we describe the characterization of the FAD gene acting in codlemone biosynthesis. We identify 27 FAD genes corresponding to the various functional classes identified in insects and Lepidoptera. These genes are distributed across the C. pomonella genome in tandem arrays or isolated genes, indicating that the FAD repertoire consists of both ancient and recent duplications and expansions. Using transcriptomics, we show large divergence in expression domains: some genes appear ubiquitously expressed across tissue and developmental stages; others appear more restricted in their expression pattern. Functional assays using heterologous expression systems reveal that one gene, Cpo_CPRQ, which is prominently and exclusively expressed in the female pheromone gland, encodes an FAD that possesses both E9 and ∆8∆10 desaturation activities. Phylogenetically, Cpo_CPRQ clusters within the Lepidoptera-specific ∆10/∆11 clade of FADs, a classic reservoir of unusual desaturase activities in moths. CONCLUSIONS Our integrative approach shows that the evolution of the signature pheromone structure of olethreutine moths relied on a gene belonging to an ancient gene expansion. Members of other expanded FAD subfamilies do not appear to play a role in chemical communication. This advises for caution when postulating the consequences of lineage-specific expansions based on genomics alone.
Collapse
Affiliation(s)
- Jean-Marc Lassance
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
5
|
Petkevicius K, Koutsoumpeli E, Betsi PC, Ding BJ, Kildegaard KR, Jensen H, Mezo N, Mazziotta A, Gabrielsson A, Sinkwitz C, Lorantfy B, Holkenbrink C, Löfstedt C, Raptopoulos D, Konstantopoulou M, Borodina I. Biotechnological production of the European corn borer sex pheromone in the yeast Yarrowia lipolytica. Biotechnol J 2021; 16:e2100004. [PMID: 33656777 DOI: 10.1002/biot.202100004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 12/27/2022]
Abstract
The European corn borer (ECB) Ostrinia nubilalis is a widespread pest of cereals, particularly maize. Mating disruption with the sex pheromone is a potentially attractive method for managing this pest; however, chemical synthesis of pheromones requires expensive starting materials and catalysts and generates hazardous waste. The goal of this study was to develop a biotechnological method for the production of ECB sex pheromone. Our approach was to engineer the oleaginous yeast Yarrowia lipolytica to produce (Z)-11-tetradecenol (Z11-14:OH), which can then be chemically acetylated to (Z)-11-tetradecenyl acetate (Z11-14:OAc), the main pheromone component of the Z-race of O. nubilalis. First, a C14 platform strain with increased biosynthesis of myristoyl-CoA was obtained by introducing a point mutation into the α-subunit of fatty acid synthase, replacing isoleucine 1220 with phenylalanine (Fas2pI1220F ). The intracellular accumulation of myristic acid increased 8.4-fold. Next, fatty acyl-CoA desaturases (FAD) and fatty acyl-CoA reductases (FAR) from nine different species of Lepidoptera were screened in the C14 platform strain, individually and in combinations. A titer of 29.2 ± 1.6 mg L-1 Z11-14:OH was reached in small-scale cultivation with an optimal combination of a FAD (Lbo_PPTQ) from Lobesia botrana and FAR (HarFAR) from Helicoverpa armigera. When the second copies of FAD and FAR genes were introduced, the titer improved 2.1-fold. The native FAS1 gene's overexpression led to a further 1.5-fold titer increase, reaching 93.9 ± 11.7 mg L-1 in small-scale cultivation. When the same engineered strain was cultivated in controlled 1 L bioreactors in fed-batch mode, 188.1 ± 13.4 mg L-1 of Z11-14:OH was obtained. Fatty alcohols were extracted from the biomass and chemically acetylated to obtain Z11-14:OAc. Electroantennogram experiments showed that males of the Z-race of O. nubilalis were responsive to biologically-derived pheromone blend. Behavioral bioassays in a wind tunnel revealed attraction of male O. nubilalis, although full precopulatory behavior was observed less often than for the chemically synthesized pheromone blend. The study paves the way for the production of ECB pheromone by fermentation.
Collapse
Affiliation(s)
- Karolis Petkevicius
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| | - Eleni Koutsoumpeli
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Petri Christina Betsi
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | - Maria Konstantopoulou
- Chemical Ecology and Natural Products Laboratory, Institute of Biosciences and Applications, National Centre of Scientific Research, Athens, Greece
| | - Irina Borodina
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark.,BioPhero ApS, Copenhagen Ø, Denmark
| |
Collapse
|
6
|
Desaturase specificity is controlled by the physicochemical properties of a single amino acid residue in the substrate binding tunnel. Comput Struct Biotechnol J 2020; 18:1202-1209. [PMID: 32542106 PMCID: PMC7283083 DOI: 10.1016/j.csbj.2020.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/23/2020] [Accepted: 05/09/2020] [Indexed: 12/11/2022] Open
Abstract
Membrane fatty acyl desaturases (mFAD) are ubiquitous enzymes in eukaryotes. They introduce double bonds into fatty acids (FAs), producing structurally diverse unsaturated FAs which serve as membrane lipid components or precursors of signaling molecules. The mechanisms controlling enzymatic specificity and selectivity of desaturation are, however, poorly understood. We found that the physicochemical properties, particularly side chain volume, of a single amino acid (aa) residue in insect mFADs (Lepidoptera: Bombyx mori and Manduca sexta) control the desaturation products. Molecular dynamics simulations of systems comprising wild-type or mutant mFADs with fatty acyl-CoA substrates revealed that the single aa substitution likely directs the outcome of the desaturation reaction by modulating the distance between substrate fatty acyl carbon atoms and active center metal ions. These findings, as well as our methodology combining mFAD mutational screening with molecular dynamics simulations, will facilitate prediction of desaturation products and facilitate engineering of mFADs for biotechnological applications.
Collapse
|
7
|
Pheromone gland transcriptome of the pink bollworm moth, Pectinophora gossypiella: Comparison between a laboratory and field population. PLoS One 2019; 14:e0220187. [PMID: 31329654 PMCID: PMC6645563 DOI: 10.1371/journal.pone.0220187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/10/2019] [Indexed: 02/02/2023] Open
Abstract
The pink bollworm, Pectinophora gossypiella, is a world-wide pest of cotton and in some parts of the cotton growing region is controlled by the mating disruption technique using synthetic sex pheromone. The sex pheromone consists of two compounds, (Z,Z)- and (Z,E)-7,11-hexadecadienyl acetates, in about a 50:50 ratio. However, recently, a population with sex pheromone compound ratios of about 62:38 were found in cotton fields that use mating disruption in Israel. To investigate how the change developed, we compared the pheromone gland transcriptomes between a reference laboratory population and a population obtained from an Israeli cotton field utilizing mating disruption. We analyzed four biological replicates from each population and found transcripts encoding 17 desaturases, 8 reductases, and 17 candidate acetyltransferases in both populations, which could be involved in sex pheromone biosynthesis. The expression abundance of some genes between the two populations was different. Some desaturases and candidate acetyltransferases were found to have mutated in one of the populations. The differentially expressed genes play potential roles in sex pheromone biosynthesis and could be involved in causing altered female sex pheromone ratios in the field population.
Collapse
|
8
|
Zhang YN, Zhang XQ, Zhu GH, Zheng MY, Yan Q, Zhu XY, Xu JW, Zhang YY, He P, Sun L, Palli SR, Zhang LW, Dong SL. A Δ9 desaturase (SlitDes11) is associated with the biosynthesis of ester sex pheromone components in Spodoptera litura. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 156:152-159. [PMID: 31027575 DOI: 10.1016/j.pestbp.2019.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 05/28/2023]
Abstract
Sex pheromone biosynthesis in moths relies on the activity of multiple enzymes, including Δ9 desaturase, which plays an important role in catalyzing desaturation at the Δ9 position of the carbon chain. However, the physiological function of moth Δ9 desaturase has not been elucidated in vivo. In this study, we used the CRISPR/Cas9 system to knockout the Δ9 desaturase gene (SlitDes11) of Spodoptera litura to analyze its role in sex pheromone biosynthesis. First, through the direct injection of SlitDes11-single guide RNA (sgRNA)/Cas9 messenger RNA into newly laid eggs, gene editing was induced in around 30% of eggs 24 h after injection and was induced in 20.8% of the resulting adult moths. Second, using a sibling-crossing strategy, insects with mutant SlitDes11 (bearing a premature stop codon) were selected, and homozygous mutants were obtained in the G5 generation. Third, pheromone gland extracts of adult female homozygous SlitDes11 mutants were analyzed using Gas chromatography (GC). The results showed that titers of all three ester sex pheromone components; Z9, E11-14:Ac, Z9,E12-14:Ac, and Z9-14:Ac; were reduced by 62.40%, 78.50%, and 72.50%, respectively. This study provides the first direct evidence for the role of SlitDes11 in sex pheromone biosynthesis in S. litura, and indicates the gene could be as potential target to disrupt sexual communication in S. litura for developing a new pollution-free insecticide.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China.
| | - Xiao-Qing Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China; Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Guan-Heng Zhu
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China; Department of Entomology, University of Kentucky, Lexington, USA
| | - Mei-Yan Zheng
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Qi Yan
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Ji-Wei Xu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yun-Ying Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | | | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei, China.
| | - Shuang-Lin Dong
- Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, College of Plant Protection, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
9
|
Li RT, Ning C, Huang LQ, Dong JF, Li X, Wang CZ. Expressional divergences of two desaturase genes determine the opposite ratios of two sex pheromone components in Helicoverpa armigera and Helicoverpa assulta. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 90:90-100. [PMID: 28986331 DOI: 10.1016/j.ibmb.2017.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/26/2017] [Accepted: 09/30/2017] [Indexed: 05/28/2023]
Abstract
The sympatric closely related species Helicoverpa armigera and Helicoverpa assulta use 97:3 and 7:93 of (Z)-11-hexadecenal and (Z)-9-hexadecenal, respectively, as their sex pheromone to find/locate correct sex mates. Moreover, (Z)-11-hexadecenyl alcohol and (Z)-9-hexadecenyl alcohol are more abundant in the pheromone gland of H. assulta than in that of H. armigera. To clarify the molecular basis of these differences, we sequenced the pheromone gland transcriptomes of the two species and compared the expression patterns of the candidate enzyme genes involved in the pheromone biosynthetic pathways by FPKM values and quantitative RT-PCR analysis. We found that the desaturase gene LPAQ expressed about 70 times higher in H. armigera than in H. assulta, whereas another desaturase gene NPVE expressed about 60 times higher in H. assulta than in H. armigera. We also observed significantly higher expression of the fatty acyl reductase (FAR) gene FAR1 and the aldehyde reductase (AR) gene AR3 in H. assulta than in H. armigera. Examination of the pheromone glands of the backcross offspring of their hybrids to H. assulta showed a positive linear correlation between the expression level of LPAQ and the amount of Z11-16:Ald and between the expression level of NPVE and the amount of Z9-16:Ald in the pheromone glands. Taken together, these data demonstrate that the expressional divergences of LPAQ and NPVE determine the opposite sex pheromone component ratios in the two species and the divergent expression of FAR1 and AR3 may account for the greater accumulation of alcohols in the pheromone gland of H. assulta.
Collapse
Affiliation(s)
- Rui-Ting Li
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Ning
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Ling-Qiao Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Feng Dong
- College of Forestry, Henan University of Science and Technology, Luoyang, China
| | - Xianchun Li
- Department of Entomology and BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
| | - Chen-Zhu Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhang YN, Zhang LW, Chen DS, Sun L, Li ZQ, Ye ZF, Zheng MY, Li JB, Zhu XY. Molecular identification of differential expression genes associated with sex pheromone biosynthesis in Spodoptera exigua. Mol Genet Genomics 2017; 292:795-809. [PMID: 28349297 DOI: 10.1007/s00438-017-1307-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/02/2017] [Indexed: 10/19/2022]
Abstract
Species-specific sex pheromone is biosynthesized and released in most female moths as a chemical cue in mating communication. However, information on genes involved in this pathway is limited. The beet armyworm, Spodoptera exigua, is a cosmopolitan agricultural pest that causes severe economic losses to many crops. In China, the female sex pheromones in sex pheromone glands (PGs) of S. exigua have been measured which comprises (Z,E)-9,12-tetradecadienyl acetate, (Z)-9-tetradecen-l-ol, (Z)-9-tetradecenyl acetate, and (Z,E)-9,12-tetradecadien-1-ol in a ratio of 47:18:18:17. Fifty-nine putative genes related to sex pheromone biosynthesis were identified in the present study by sequencing and analyzing the sex pheromone gland (PG) transcriptome of S. exigua. Expression profiles revealed that two desaturase (SexiDes5 and SexiDes11) and three fatty acyl reductase (SexiFAR2, 3, and 9) genes had PG-specific expression, and phylogenetic analysis demonstrated that they clustered with genes known to be involved in pheromone synthesis in other moth species. Our results provide crucial background information that could facilitate the elucidation of sex pheromone biosynthesis pathway of S. exigua as well as other Spodoptera species and help identify potential targets for disrupting sexual communication in S. exigua for developing novel environment-friendly pesticides.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Long-Wa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, People's Republic of China.
| | - Da-Song Chen
- Guangdong Entomological Institute, Guangzhou, 510260, People's Republic of China
| | - Liang Sun
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhao-Qun Li
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, 310008, People's Republic of China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Mei-Yan Zheng
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, No. 100, Dongshan Road, Huaibei, 235000, People's Republic of China.
| |
Collapse
|
11
|
Zhang YN, Zhu XY, Fang LP, He P, Wang ZQ, Chen G, Sun L, Ye ZF, Deng DG, Li JB. Identification and Expression Profiles of Sex Pheromone Biosynthesis and Transport Related Genes in Spodoptera litura. PLoS One 2015; 10:e0140019. [PMID: 26445454 PMCID: PMC4596838 DOI: 10.1371/journal.pone.0140019] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/21/2015] [Indexed: 11/19/2022] Open
Abstract
Although the general pathway of sex pheromone synthesis in moth species has been established, the molecular mechanisms remain poorly understood. The common cutworm Spodoptera litura is an important agricultural pest worldwide and causes huge economic losses annually. The female sex pheromone of S. litura comprises Z9,E11-14:OAc, Z9,E12-14:OAc, Z9-14:OAc, and E11-14:OAc. By sequencing and analyzing the transcriptomic data of the sex pheromone glands, we identified 94 candidate genes related to pheromone biosynthesis (55 genes) or chemoreception (39 genes). Gene expression patterns and phylogenetic analysis revealed that two desaturase genes (SlitDes5 and SlitDes11) and one fatty acyl reductase gene (SlitFAR3) showed pheromone gland (PG) biased or specific expression, and clustered with genes known to be involved in pheromone synthesis in other moth species. Furthermore, 4 chemoreception related genes (SlitOBP6, SlitOBP11, SlitCSP3, and SlitCSP14) also showed higher expression in the PG, and could be additional candidate genes involved in sex pheromone transport. This study provides the first solid background information that should facilitate further elucidation of sex pheromone biosynthesis and transport, and indicates potential targets to disrupt sexual communication in S. litura for a novel pest management strategy.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Li-Ping Fang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Peng He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, China
| | - Zhi-Qiang Wang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Geng Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Zhan-Feng Ye
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Dao-Gui Deng
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jin-Bu Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
12
|
Ding BJ, Löfstedt C. Analysis of the Agrotis segetum pheromone gland transcriptome in the light of sex pheromone biosynthesis. BMC Genomics 2015; 16:711. [PMID: 26385554 PMCID: PMC4575462 DOI: 10.1186/s12864-015-1909-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 09/09/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Moths rely heavily on pheromone communication for mate finding. The pheromone components of most moths are modified from the products of normal fatty acid metabolism by a set of tissue-specific enzymes. The turnip moth, Agrotis segetum uses a series of homologous fatty-alcohol acetate esters ((Z)-5-decenyl, (Z)-7-dodecenyl, and (Z)-9 tetradecenyl acetate) as its sex pheromone components. The ratio of the components differs between populations, making this species an interesting subject for studies of the enzymes involved in the biosynthetic pathway and their influence on sex pheromone variation. RESULTS Illumina sequencing and comparative analysis of the transcriptomes of the pheromone gland and abdominal epidermal tissue, enabled us to identify genes coding for putative key enzymes involved in the pheromone biosynthetic pathway, such as fatty acid synthase, β-oxidation enzymes, fatty-acyl desaturases (FAD), fatty-acyl reductases (FAR), and acetyltransferases. We functionally assayed the previously identified ∆11-desaturase [GenBank: ES583599, JX679209] and FAR [GenBank: JX679210] and candidate acetyltransferases (34 genes) by heterologous expression in yeast. The functional assay confirmed that the ∆11-desaturase interacts with palmitate and produces (Z)-11-hexadecenoate, which is the common unsaturated precursor of three homologous pheromone component acetates produced by subsequent chain-shortening, reduction and acetylation. Much lower, but still visible, activity on 14C and 12C saturated acids may account for minor pheromone compounds previously observed in the pheromone gland. The FAR characterized can operate on various unsaturated fatty acids that are the immediate acyl precursors of the different A. segetum pheromone components. None of the putative acetyltransferases that we expressed heterologously did acetylate any of the fatty alcohols tested as substrates. CONCLUSIONS The massive sequencing technology generates enormous amounts of candidate genes potentially involved in pheromone biosynthesis but testing their function by heterologous expression or gene silencing is a bottleneck. We confirmed the function of a previously identified desaturase gene and a fatty-acyl reductase gene by heterologous expression, but the acetyltransferase postulated to be involved in pheromone biosynthesis remains illusive, in spite of 34 candidates being assayed. We also generated lists of gene candidates that may be useful for characterizing the acetyl-CoA carboxylase, fatty acid synthetase and β-oxidation enzymes.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Christer Löfstedt
- Pheromone Group, Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
13
|
Zhang YN, Xia YH, Zhu JY, Li SY, Dong SL. Putative pathway of sex pheromone biosynthesis and degradation by expression patterns of genes identified from female pheromone gland and adult antenna of Sesamia inferens (Walker). J Chem Ecol 2014; 40:439-51. [PMID: 24817326 DOI: 10.1007/s10886-014-0433-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 03/17/2014] [Accepted: 04/21/2014] [Indexed: 12/01/2022]
Abstract
The general pathway of biosynthesis and degradation for Type-I sex pheromones in moths is well established, but some genes involved in this pathway remain to be characterized. The purple stem borer, Sesamia inferens, employs a pheromone blend containing components with three different terminal functional groups (Z11-16:OAc, Z11-16:OH, and Z11-16:Ald) of Type-I sex pheromones. Thus, it provides a good model to study the diversity of genes involved in pheromone biosynthesis and degradation pathways. By analyzing previously obtained transcriptomic data of the sex pheromone glands and antennae, we identified 73 novel genes that are possibly related to pheromone biosynthesis (46 genes) or degradation (27 genes). Gene expression patterns and phylogenetic analysis revealed that one desaturase (SinfDes4), one fatty acid reductase (SinfFAR2), and one fatty acid xtransport protein (SinfFATP1) genes were predominantly expressed in pheromone glands, and clustered with genes involved in pheromone synthesis in other moth species. Ten genes including five carboxylesterases (SinfCXE10, 13, 14, 18, and 20), three aldehyde oxidases (SinfAOX1, 2 and 3), and two alcohol dehydrogenases (SinfAD1 and 3) were expressed specifically or predominantly in antennae, and could be candidate genes involved in pheromone degradation. SinfAD1 and 3 are the first reported alcohol dehydrogenase genes with antennae-biased expression. Based on these results we propose a pathway involving these potential enzyme-encoding gene candidates in sex pheromone biosynthesis and degradation in S. inferens. This study provides robust background information for further elucidation of the genetic basis of sex pheromone biosynthesis and degradation, and ultimately provides potential targets to disrupt sexual communication in S. inferens for control purposes.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Education Ministry, Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | |
Collapse
|
14
|
Ding BJ, Hofvander P, Wang HL, Durrett TP, Stymne S, Löfstedt C. A plant factory for moth pheromone production. Nat Commun 2014; 5:3353. [PMID: 24569486 PMCID: PMC3948062 DOI: 10.1038/ncomms4353] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 01/30/2014] [Indexed: 11/12/2022] Open
Abstract
Moths depend on pheromone communication for mate finding and synthetic pheromones are used for monitoring or disruption of pheromone communication in pest insects. Here we produce moth sex pheromone, using Nicotiana benthamiana as a plant factory, by transient expression of up to four genes coding for consecutive biosynthetic steps. We specifically produce multicomponent sex pheromones for two species. The fatty alcohol fractions from the genetically modified plants are acetylated to mimic the respective sex pheromones of the small ermine moths Yponomeuta evonymella and Y. padella. These mixtures are very efficient and specific for trapping of male moths, matching the activity of conventionally produced pheromones. Our long-term vision is to design tailor-made production of any moth pheromone component in genetically modified plants. Such semisynthetic preparation of sex pheromones is a novel and cost-effective way of producing moderate to large quantities of pheromones with high purity and a minimum of hazardous waste.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| | - Timothy P. Durrett
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, Kansas 66506, USA
| | - Sten Stymne
- Department of Plant Breeding and Biotechnology, Swedish University of Agricultural Sciences, SE-23053 Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362 Lund, Sweden
| |
Collapse
|
15
|
Albre J, Liénard MA, Sirey TM, Schmidt S, Tooman LK, Carraher C, Greenwood DR, Löfstedt C, Newcomb RD. Sex pheromone evolution is associated with differential regulation of the same desaturase gene in two genera of leafroller moths. PLoS Genet 2012; 8:e1002489. [PMID: 22291612 PMCID: PMC3266893 DOI: 10.1371/journal.pgen.1002489] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Accepted: 12/04/2011] [Indexed: 11/29/2022] Open
Abstract
Chemical signals are prevalent in sexual communication systems. Mate recognition has been extensively studied within the Lepidoptera, where the production and recognition of species-specific sex pheromone signals are typically the defining character. While the specific blend of compounds that makes up the sex pheromones of many species has been characterized, the molecular mechanisms underpinning the evolution of pheromone-based mate recognition systems remain largely unknown. We have focused on two sets of sibling species within the leafroller moth genera Ctenopseustis and Planotortrix that have rapidly evolved the use of distinct sex pheromone blends. The compounds within these blends differ almost exclusively in the relative position of double bonds that are introduced by desaturase enzymes. Of the six desaturase orthologs isolated from all four species, functional analyses in yeast and gene expression in pheromone glands implicate three in pheromone biosynthesis, two Δ9-desaturases, and a Δ10-desaturase, while the remaining three desaturases include a Δ6-desaturase, a terminal desaturase, and a non-functional desaturase. Comparative quantitative real-time PCR reveals that the Δ10-desaturase is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (Ctenopseustis obliquana and Planotortrix octo), the expression levels of the Δ10-desaturase are significantly higher than in the pheromone glands of their respective sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in two genera of moths. We suggest that differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation. Chemical signals are prevalent in sexual communication systems, especially within the Lepidoptera where sex pheromones are typically one of the defining characteristics of species. We have isolated six desaturases from two groups of sibling species of leafroller moths belonging to the genera Ctenopseustis and Planotortrix. Functional analyses in yeast and quantitative RT–PCR indicate that three of the desaturases are involved in the biosynthesis of sex pheromone components in these species. One of three enzymes is a Δ10-desaturase that is differentially expressed in the pheromone glands of the two sets of sibling species, consistent with differences in the pheromone blend in both species pairs. In the pheromone glands of species that utilize (Z)-8-tetradecenyl acetate as sex pheromone component (C. obliquana and P. octo), the expression levels of the Δ10-desaturase are significantly higher than pheromone gland expression levels in their sibling species (C. herana and P. excessana). Our results demonstrate that interspecific sex pheromone differences are associated with differential regulation of the same desaturase gene in these two genera of moths. Based on these findings differential gene regulation among members of a multigene family may be an important mechanism of molecular innovation in sex pheromone evolution and speciation.
Collapse
Affiliation(s)
- Jérôme Albre
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | | | - Tamara M. Sirey
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Silvia Schmidt
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | - Leah K. Tooman
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - David R. Greenwood
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | | | - Richard D. Newcomb
- The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
- Allan Wilson Centre for Molecular Ecology and Evolution, Palmerston North, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
- * E-mail:
| |
Collapse
|
16
|
Liénard MA, Strandh M, Hedenström E, Johansson T, Löfstedt C. Key biosynthetic gene subfamily recruited for pheromone production prior to the extensive radiation of Lepidoptera. BMC Evol Biol 2008; 8:270. [PMID: 18831750 PMCID: PMC2584044 DOI: 10.1186/1471-2148-8-270] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 10/02/2008] [Indexed: 11/10/2022] Open
Abstract
Background Moths have evolved highly successful mating systems, relying on species-specific mixtures of sex pheromone components for long-distance mate communication. Acyl-CoA desaturases are key enzymes in the biosynthesis of these compounds and to a large extent they account for the great diversity of pheromone structures in Lepidoptera. A novel desaturase gene subfamily that displays Δ11 catalytic activities has been highlighted to account for most of the unique pheromone signatures of the taxonomically advanced ditrysian species. To assess the mechanisms driving pheromone evolution, information is needed about the signalling machinery of primitive moths. The currant shoot borer, Lampronia capitella, is the sole reported primitive non-ditrysian moth known to use unsaturated fatty-acid derivatives as sex-pheromone. By combining biochemical and molecular approaches we elucidated the biosynthesis paths of its main pheromone component, the (Z,Z)-9,11-tetradecadien-1-ol and bring new insights into the time point of the recruitment of the key Δ11-desaturase gene subfamily in moth pheromone biosynthesis. Results The reconstructed evolutionary tree of desaturases evidenced two ditrysian-specific lineages (the Δ11 and Δ9 (18C>16C)) to have orthologs in the primitive moth L. capitella despite being absent in Diptera and other insect genomes. Four acyl-CoA desaturase cDNAs were isolated from the pheromone gland, three of which are related to Δ9-desaturases whereas the fourth cDNA clusters with Δ11-desaturases. We demonstrated that this transcript (Lca-KPVQ) exclusively accounts for both steps of desaturation involved in pheromone biosynthesis. This enzyme possesses a Z11-desaturase activity that allows transforming the palmitate precursor (C16:0) into (Z)-11-hexadecenoic acid and the (Z)-9-tetradecenoic acid into the conjugated intermediate (Z,Z)-9,11-tetradecadienoic acid. Conclusion The involvement of a single Z11-desaturase in pheromone biosynthesis of a non-ditrysian moth species, supports that the duplication event leading to the origin of the Lepidoptera-specific Δ11-desaturase gene subfamily took place before radiation of ditrysian moths and their divergence from other heteroneuran lineages. Our findings uncover that this novel class of enzymes affords complex combinations of unique unsaturated fatty acyl-moieties of variable chain-lengths, regio- and stereo-specificities since early in moth history and contributes a notable innovation in the early evolution of moth-pheromones.
Collapse
Affiliation(s)
- Marjorie A Liénard
- Chemical Ecology and Ecotoxicology, Department of Ecology, Lund University, Ecology Building, SE-22362, Lund, Sweden.
| | | | | | | | | |
Collapse
|