1
|
Metabolite Changes in Orange Dead Leaf Butterfly Kallima inachus during Ontogeny and Diapause. Metabolites 2022; 12:metabo12090804. [PMID: 36144209 PMCID: PMC9501346 DOI: 10.3390/metabo12090804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/22/2022] Open
Abstract
Holometabolism is a form of insect development which includes four life stages: egg, larva, pupa, and imago (or adult). The developmental change of whole body in metabolite levels of holometabolous insects are usually ignored and lack study. Diapause is an alternative life-history strategy that can occur during the egg, larval, pupal, and adult stages in holometabolous insects. Kallima inachus (Lepidoptera: Nymphalidae) is a holometabolous and adult diapausing butterfly. This study was intended to analyze metabolic changes in K. inachus during ontogeny and diapause through a non-targeted UPLC-MS/MS (ultra-performance liquid chromatograph coupled with tandem mass spectrometry) based metabolomics analysis. A variety of glycerophospholipids (11), amino acid and its derivatives (16), and fatty acyls (nine) are crucial to the stage development of K. inachus. 2-Keto-6-acetamidocaproate, N-phenylacetylglycine, Cinnabarinic acid, 2-(Formylamino) benzoic acid, L-histidine, L-glutamate, and L-glutamine play a potentially important role in transition of successive stages (larva to pupa and pupa to adult). We observed adjustments associated with active metabolism, including an accumulation of glycerophospholipids and carbohydrates and a degradation of lipids, as well as amino acid and its derivatives shifts, suggesting significantly changed in energy utilization and management when entering into adult diapause. Alpha-linolenic acid metabolism and ferroptosis were first found to be associated with diapause in adults through pathway analyses. Our study lays the foundation for a systematic study of the developmental mechanism of holometabolous insects and metabolic basis of adult diapause in butterflies.
Collapse
|
2
|
Men L, Zhang Y, Li K, Li Z, Li C, Zhang X, Gong X, Fang L. Metabolism and pharmacokinetics of mebendazole in Japanese pufferfish ( Takifugu rubripes). Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:912-924. [PMID: 35442868 DOI: 10.1080/19440049.2022.2052974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
As a typical and broad-spectrum benzimidazole, mebendazole (MBZ) has long been used in human and veterinary medicine to treat parasitic infestations, and is widely employed in the aquaculture of Japanese pufferfish (Takifugu rubripes). However, there have been no studies examining the pharmacokinetic characteristics of MBZ in Japanese pufferfish. Furthermore, the presence of MBZ and its metabolites in animal-derived raw food represents a notable safety concern. Here, we investigated the metabolism of MBZ using a UPLC-Q-TOF system. Additionally, we evaluated the pharmacokinetics of MBZ and two metabolites, 2-amino-5(6)-benzoylbenzimidazole (MBZ-NH2) and 5-hydroxymebendazole (MBZ-OH), in Japanese pufferfish following intramuscular injection of 20 mg/kg MBZ. We detected three metabolites of MBZ (M1-M3), among which, 2-amino-5(6)-(a-hydroxybenzyl) benzimidazole (M3) was detected in an aquatic animal for the first time. The plasma dispositions of MBZ, MBZ-NH2, and MBZ-OH were characterized by low plasma clearance, medium distribution volume, and long terminal half-life. Moreover, these compounds were widely distributed in the muscle, from which they were rapidly cleared. The pharmacokinetics and metabolism of mebendazole in Japanese pufferfish are described for the first time in this study. Our findings provide a basis for the rational application of MBZ in Japanese pufferfish farming and contribute to our understanding of the metabolism of MBZ in cultured fish.
Collapse
Affiliation(s)
- Lei Men
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Yuhan Zhang
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Keke Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Zhongyu Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Chunbin Li
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Xueyuan Zhang
- Department of Food Control, Chaozhou Institute for Food and Drug Control, Chaozhou, China
| | - Xiaojie Gong
- Department of Biological Engineering, College of Life Science, Dalian Minzu University, Dalian, China
| | - Linlin Fang
- College of Pharmacy, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Zhang R, Du J, Cao YY, Thakur K, Tang SM, Hu F, Wei ZJ. Hydrogen sulfide treatment retrieves the inhibition of growth and development characteristics in silkworm (Bombyx mori) via phosphoacetyl glucosamine mutase gene knock down. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 110:e21873. [PMID: 35112397 DOI: 10.1002/arch.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/09/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Phosphoacetyl glucosamine mutase (PGM) is the key gene for glycolysis of important metabolic pathways in silkworm, and H2 S (7.5 μM) can promote the growth and development of silkworm. Herein, we used body cavity injection of small-interfering RNA (siRNA) to interfere with the PGM gene in H2 S-treated silkworms. After RNA interference (RNAi), we investigated the growth and development of the silkworm. H2 S treatment could significantly recover the inhibition of body weight, cocoon weight, cocoon shell weight, and cocoon shell ratio by knocking down PGM gene in silkworm, without significant effects on eggs laying and production, and then analyzed the mRNA expression of PGM gene. The interference of siRNA significantly decreased the expression of targeted PGM gene and was concentrated in 48 h followed by gradual recovery. Three interference fragments also showed different interference effects, and siRNA of PGM-3 exerted the highest interference effect to the target gene expression. Fat body had the highest mRNA expression of PGM gene, and the best interference effect was observed after siRNA injection. The results showed that the gene based on H2 S treatment may have an important impact on the growth and development of silkworm by affecting its metabolic pathway.
Collapse
Affiliation(s)
- Rui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Juan Du
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Yu-Yao Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, PR China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, PR China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, PR China
- School of Biological Science and Engineering, North Minzu University, Yinchuan, PR China
| |
Collapse
|
4
|
Tao S, Wang J, Liu M, Sun F, Li B, Ye C. Haemolymph metabolomic differences in silkworms (Bombyx mori L.) under mulberry leaf and two artificial diet rearing methods. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 109:e21851. [PMID: 34877697 DOI: 10.1002/arch.21851] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
The new technology of silkworm (Bombyx mori L.) artificial feed breeding has many characteristics and advantages. This study assessed silkworm rearing with mulberry leaf at all instars (MF) as the control, and used metabolomics to explore the differences in haemolymph metabolism of fifth instar silkworms under two modes of rearing with an artificial diet at all instars (AF) and rearing with an artificial diet during first to third instars and mulberry leaf during the fourth and fifth instars (AMF). The results show that, compared with silkworms of the MF group, the amount and fold change of various metabolites were higher in the haemolymph of AF group silkworms, and the metabolism of amino acids and uric acid, carbohydrates, lipids, and vitamins were changed. These changes may be the reasons for the poor performance of the AF silkworms. However, the amount and fold change of the various metabolites of silkworms in the AMF group were lower, and some metabolic pathways were more active. The amount of material and energy supply were greater. These changes could explain the high efficiency growth of body weight of silkworms after the conversion from artificial diet rearing to mulberry leaf rearing. These findings provide an important theoretical basis for the optimisation of artificial diet rearing technology for silkworms.
Collapse
Affiliation(s)
- Shanshan Tao
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jie Wang
- School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Minghui Liu
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Fan Sun
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Bing Li
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chongjun Ye
- Institute of Sericulture, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
5
|
Zhang R, Cao YY, Du J, Thakur K, Tang SM, Hu F, Wei ZJ. Transcriptome Analysis Reveals the Gene Expression Changes in the Silkworm ( Bombyx mori) in Response to Hydrogen Sulfide Exposure. INSECTS 2021; 12:insects12121110. [PMID: 34940198 PMCID: PMC8706860 DOI: 10.3390/insects12121110] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/27/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Simple Summary The fat body is one of the most important tissues in the body of insects due to its number of functions. Nowadays the new physiological function of H2S has gained attention as a novel signaling molecule. H2S performs crucial regulatory functions involving growth, the cardiovascular system, oxidative stress, and inflammation in many organisms. In this study, RNA-seq technology was used to investigate the fat body of the silkworm at the transcriptional level after H2S exposure during the 5th larvae stage. A total of 1200 (DEGs) was identified after 7.5 µM H2S treatment, of which 977 DEGs were up-regulated and 223 DEGs were down-regulated. DEGs were mainly involved in the transport pathway, cellular community, carbohydrate metabolism, and immune-associated signal transduction. Present research provides new insights on the gene expression changes in the fat body of silkworms after H2S exposure. Abstract Hydrogen sulfide (H2S) has been recognized for its beneficial influence on physiological alterations. The development (body weight) and economic characteristics (cocoon weight, cocoon shell ratio, and cocoon shell weight) of silkworms were increased after continuous 7.5 µM H2S treatment. In the present study, gene expression changes in the fat body of silkworms at the 5th instar larvae in response to the H2S were investigated through comparative transcriptome analysis. Moreover, the expression pattern of significant differentially expressed genes (DEGs) at the 5th instar larvae was confirmed by quantitative real-time PCR (qRT-PCR) after H2S exposure. A total of 1200 (DEGs) was identified, of which 977 DEGs were up-regulated and 223 DEGs were down-regulated. Most of the DEGs were involved in the transport pathway, cellular community, carbohydrate metabolism, and immune-associated signal transduction. The up regulated genes under H2S exposure were involved in endocytosis, glycolysis/gluconeogenesis, the citrate cycle (TCA cycle), and the synthesis of fibroin, while genes related to inflammation were down-regulated, indicating that H2S could promote energy metabolism, the transport pathway, silk synthesis, and inhibit inflammation in the silkworm. In addition, the expression levels of these genes were increased or decreased in a time-dependent manner during the 5th instar larvae. These results provided insight into the effects of H2S on silkworms at the transcriptional level and a substantial foundation for understanding H2S function.
Collapse
Affiliation(s)
- Rui Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
| | - Yu-Yao Cao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
| | - Juan Du
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
| | - Kiran Thakur
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
| | - Shun-Ming Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China;
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Fei Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
- Correspondence: (F.H.); (Z.-J.W.)
| | - Zhao-Jun Wei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China; (R.Z.); (Y.-Y.C.); (K.T.)
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China;
- Correspondence: (F.H.); (Z.-J.W.)
| |
Collapse
|
6
|
Khosropanah MH, Vaghasloo MA, Shakibaei M, Mueller AL, Kajbafzadeh AM, Amani L, Haririan I, Azimzadeh A, Hassannejad Z, Zolbin MM. Biomedical applications of silkworm (Bombyx Mori) proteins in regenerative medicine (a narrative review). J Tissue Eng Regen Med 2021; 16:91-109. [PMID: 34808032 DOI: 10.1002/term.3267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 12/19/2022]
Abstract
Silk worm (Bombyx Mori) protein, have been considered as potential materials for a variety of advanced engineering and biomedical applications for decades. Recently, silkworm silk has gained significant importance in research attention mainly because of its remarkable and exceptional mechanical properties. Silk has already been shown to have unique interactions with cells in tissues through bio-recognition units. The natural silk contains fibroin and sericin and has been used in various tissues of the human body (skin, bone, nerve, and so on). Besides, silk also still has anti-cancer, anti-tyrosinase, anti-coagulant, anti-oxidant, anti-bacterial, and anti-diabetic properties. This article is supposed to describe the diverse biomedical capabilities of B. Mori silk as the appropriate biomaterial among the assorted natural and artificial polymers that are presently accessible, and ideal for usage in regenerative medicine fields.
Collapse
Affiliation(s)
- Mohammad Hossein Khosropanah
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Alizadeh Vaghasloo
- Department of Traditional Medicine, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, Munich, Germany
| | - Abdol-Mohammad Kajbafzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Amani
- Department of Traditional Pharmacy, School of Persian Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy and Department of Pharmaceutics, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashkan Azimzadeh
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Hassannejad
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Majidi Zolbin
- Pediatric Urology and Regenerative Medicine Research Center, Children's Medical Center, Pediatric Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Ying Y, Jin Y, Wang X, Ma J, Zeng M, Wang X. Diagnosis Model of Hydrogen Sulfide Poisoning Based on Support Vector Machine. CURR PHARM ANAL 2021. [DOI: 10.2174/1573412916999200727181005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Introduction:
Hydrogen sulfide (H2S) is a lethal environmental and industrial poison. The mortality rate of
occupational acute H2S poisoning reported in China is 23.1% ~ 50%. Due to the huge amount of information on
metabolomics changes after body poisoning, it is important to use intelligent algorithms to mine multivariate interactions.
Methods:
This paper first uses GC-MS metabolomics to detect changes in the urine components of the
poisoned group and control rats to form a metabolic dataset, and then uses the SVM classification algorithm
in machine learning to train the hydrogen sulfide poisoning training dataset to obtain a classification
recognition model. A batch of rats (n = 15) was randomly selected and exposed to 20 ppm H2S
gas for 40 days (twice morning and evening, 1 hour each exposure) to prepare a chronic H2S rat poisoning
model. The other rats (n = 15) were exposed to the same volume of air and 0 ppm hydrogen
sulfide gas as the control group. The treated urine samples were tested using a GC-MS.
Results:
The method locates the optimal parameters of SVM, which improves the accuracy of SVM
classification to 100%. This paper uses the information to gain an attribute evaluation method to screen
out the top 6 biomarkers that contribute to the predicted category (Glycerol, -Hydroxybutyric acid,
arabinofuranose, Pentitol, L-Tyrosine, L-Proline).
Conclusion:
The SVM diagnostic model of hydrogen sulfide poisoning constructed in this work has training time and
prediction accuracy; it has achieved excellent results and provided an intelligent decision-making method for the diagnosis
of hydrogen sulfide poisoning.
Collapse
Affiliation(s)
- Yifan Ying
- Information Technology Center, Wenzhou Medical University, Wenzhou,China
| | - Yongxi Jin
- Department of Rehabilitation, Wenzhou Municipal Hospital of Traditional Chinese Medicine, Wenzhou,China
| | - Xianchuan Wang
- Information Technology Center, Wenzhou Medical University, Wenzhou,China
| | - Jianshe Ma
- School of Basic Medicine, Wenzhou Medical University, Wenzhou,China
| | - Min Zeng
- Network Information Center, Wenzhou Vocational College of Science and Technology, Wenzhou,China
| | - Xianqin Wang
- Analytical and Testing Center of Wenzhou Medical University, Wenzhou,China
| |
Collapse
|