1
|
Klüber P, Gurusinga FF, Hurka S, Vilcinskas A, Tegtmeier D. Turning trash into treasure: Hermetia illucens microbiome and biodegradation of industrial side streams. Appl Environ Microbiol 2024:e0099124. [PMID: 39436059 DOI: 10.1128/aem.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/10/2024] [Indexed: 10/23/2024] Open
Abstract
Black soldier fly larvae (BSFL) have attracted attention due to their ability to upcycle various biological side streams into valuable biomass, such as proteins, lipids, and chitin. In this study, we investigated the impact of high-fiber diets on larval growth performance and the shift of microbes in the gut. We tested empty fruit bunches (EFB), potato pulp (PP), and cottonseed press cake (CPC), with chicken feed (CF) used as a control diet. We found that larvae reared on the EFB, PP, and CPC were smaller than control larvae at the end of development due to the low nutritional value of the diets. However, survival rates of more than 90% were observed regardless of the diet. We used a cultivation-dependent approach to analyze the microbial community in the gut of BSFL, isolated, and identified a total of 329 bacterial strains. Bacillaceae were most frequently isolated from larvae reared on the high-fiber EFB diet. These isolates were predicted to degrade cellulose in silico and this was subsequently confirmed in vitro using the Congo Red assay. Whereas the members of Enterobacteriaceae and Morganellaceae were mostly found in guts of larvae reared on the high-protein diets CPC and CF. We conclude that the gut microbiome plays a crucial role in the digestion of fiber-rich plant organic material, thereby enabling the BSFL to successfully complete their life cycle also on substrates with low nutritional value. As a result, BSFL convert industrial side streams into valuable biomass, reducing waste and promoting sustainability. IMPORTANCE Organic side streams from various industries pose a challenge to the environment. They are often present in huge amounts and are mostly discarded, incinerated, used for biogas production, or as feed for ruminant animals. Many plant-based side streams contain difficult-to-digest fiber as well as anti-nutritional or even insecticidal compounds that could harm the animals. These challenges can be addressed using black soldier fly larvae, which are known to degrade various organic substrates and convert them into valuable biomass. This will help mitigate agro-industrial side streams via efficient waste management and will contribute to the more economical and sustainable farming of insects.
Collapse
Affiliation(s)
- Patrick Klüber
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
| | - Friscasari F Gurusinga
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| | - Sabine Hurka
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
| | - Andreas Vilcinskas
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Institute for Insect Biotechnology, Justus Liebig University, Giessen, Germany
| | - Dorothee Tegtmeier
- Branch for Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Giessen, Germany
- BMBF Junior Research Group in Bioeconomy (BioKreativ) "SymBioÖkonomie", Giessen, Germany
| |
Collapse
|
2
|
Salam M, Bolletta V, Meng Y, Yakti W, Grossule V, Shi D, Hayat F. Exploring the role of the microbiome of the H. illucens (black soldier fly) for microbial synergy in optimizing black soldier fly rearing and subsequent applications. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024:125055. [PMID: 39447631 DOI: 10.1016/j.envpol.2024.125055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
The symbiotic microbiome in the insect's gut is vital to the host insect's development, improvement of health, resistance to disease, and adaptability to the environment. The black soldier fly (BSF) can convert organic substrates into a protein- and fat-rich biomass that is viable for various applications. With the support of a selective microbiome, BSF can digest and recycle different organic waste, reduce the harmful effects of improper disposal, and transform low-value side streams into valuable resources. Molecular and systems-level investigations on the harbored microbial populations may uncover new biocatalysts for organic waste degradation. This article discusses and summarizes the efforts taken toward characterizing the BSF microbiota and analyzing its substrate-dependent shifts. In addition, the review discusses the dynamic insect-microbe relationship from the functional point of view and focuses on how understanding this symbiosis can lead to alternative applications for BSF. Valorization strategies can include manipulating the microbiota to optimize insect growth and biomass production, as well as exploiting the role of BSF microbiota to discover new bioactive compounds based on BSF immunity. Optimizing the BSF application in industrial setup and exploiting its gut microbiota for innovative biotechnological applications are potential developments that could emerge in the coming decade.
Collapse
Affiliation(s)
- Muhammad Salam
- Department of Environmental Science, and Ecology, Chengdu University of Technology, Chengdu, PR China; Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China.
| | - Viviana Bolletta
- Department of Agricultural, Food and Environmental Sciences (DSA3), University of Perugia, Italy
| | - Ying Meng
- National Key Laboratory of Agricultural Microbiology, Frontiers Science Center for Animal Breeding and Sustainable Production, National Engineering Research Center of Microbial Pesticides, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, PR China
| | - Wael Yakti
- Faculty of Life Sciences, Albrecht Daniel Thaer Institute of Agricultural and Horticultural Sciences, Humboldt University Berlin, Berlin, Berlin, Germany
| | - Valentina Grossule
- Department of Civil, Architectural and Environmental Engineering, University of Padova, Italy
| | - Dezhi Shi
- Department of Environmental Science, School of Environment and Ecology, Chongqing University, Chongqing, PR China
| | - Faisal Hayat
- Department of Biological Sciences, Tennessee State University, Nashville, TN, USA
| |
Collapse
|
3
|
Resconi A, Bellezza Oddon S, Ferrocino I, Loiotine Z, Caimi C, Gasco L, Biasato I. Effects of brewery by-products on growth performance, bioconversion efficiency, nutritional profile, and microbiota and mycobiota of black soldier fly larvae. Animal 2024; 18:101288. [PMID: 39226779 DOI: 10.1016/j.animal.2024.101288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/29/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Brewery by-products are recognised as suitable rearing substrates for Hermetia illucens, better known as black soldier fly (BSF) but information about the impact of different ratios of brewer's spent grains (BSG) and brewer's spent yeast (BSY) are still scarce. This study evaluated the effects of BSG-BSY-based diets on BSF larval growth, survival, bioconversion efficiency, nutritional profile, and microbiota and mycobiota. A total of 3 000 6-day-old BSF larvae were allotted to five dietary treatments (six replicate boxes/diet, 100 larvae/box): (i) BSY2.5 (25 g/kg of BSY+975 g/kg of BSG), (ii) BSY5 (50 g/kg of BSY+950 g/kg of BSG), (iii) BSY7.5 (75 g/kg of BSY+925 g/kg of BSG), (iv) BSY10 (100 g/kg of BSY+900 g/kg of BSG), and (v) control (Gainesville diet). Larval weight and substrate pH were recorded every 4 days. At the end of the trial (5% of prepupae), bioconversion efficiency corrected for residue (BER), reduction rate (RR), and waste reduction index (WRI) were calculated, and the larval proximate composition, microbiota and mycobiota characterised. At 10 and 14 days of age, BSY7.5 and BSY10 larvae displayed higher weight than BSY2.5 and BSY5 (P < 0.05), with BSY10 larvae showing the highest weight among the BSG-BSY-based diets at the end of the trial (P < 0.05). The BSY7.5 and BSY10 larvae also displayed a better BER than BSY2.5 and BSY5 (P < 0.01), whereas similar RR, WRI, survival and development time, as well as pH, were, however, observed among the BSG-BSY-based diets (P > 0.05). The BSY10 larvae displayed lower ether extract content than the other BSG-BSY-based diets (P > 0.001). The use of BSG-BSY-based diets did not influence the alpha diversity of larval microbiota and mycobiota (P > 0.05), but a specific microbial signature was identified per each dietary treatment (Porphyromonadaceae [BSY5], Sphingomonas [BSY7.5], Bacillus [BSY10] and Ruminococcus and Myroides [BSG-BSY-based diets]; P < 0.05). Co-occurrence and co-exclusion analysis also showed that Saccharomyces cerevisiae and Pichia excluded and favoured, respectively, the presence of Streptomyces and Fluviicola, while Clavispora lusitaniae was associated with Myroides (P < 0.05). In conclusion, BSG-BSY-based diets are suitable for rearing HI in terms of larval performance, nutritional profile, and microbiota and mycobiota, with 7.5 and 10% of BSY inclusion levels being able to improve larval growth and bioconversion efficiency.
Collapse
Affiliation(s)
- A Resconi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - S Bellezza Oddon
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy.
| | - I Ferrocino
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - Z Loiotine
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - C Caimi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - L Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| | - I Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Paolo Braccini 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
4
|
Renna M, Gasco L, Livorsi L, Mele M, Conte G, Meneguz M, Lussiana C. Growth performance, proximate composition and fatty acid profile of black soldier fly larvae reared on two grape pomace varieties. Animal 2024; 18:101240. [PMID: 39079311 DOI: 10.1016/j.animal.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 08/18/2024] Open
Abstract
The black soldier fly (Hermetia illucens) is attracting increasing interest for its ability to convert low-value substrates into highly nutritious feed. This study aimed at evaluating grape pomace from two varieties (Becuet - B; Moscato - M) as rearing substrates for black soldier fly larvae (BSFL), focusing on the related effects on larval growth performance, proximate composition, and fatty acid profile. A total of six replicates per treatment, and 1 000 BSFL per replica, were used. Larval development was assessed by larvae weight, which was recorded eight times during the trial: the day after the beginning of the trial, and then on days 5, 8, 13, 15, 20, 22, and 27 (day in which the 30% of BSFL reached the prepupal stage). Production and waste reduction efficiency parameters, namely the growth rate, substrate reduction and substrate reduction index, were calculated. The two grape pomace varieties were analysed for their proximate composition and fatty acid profile; the same analyses were conducted on BSFL (30 larvae per replica) that were collected at the end of the trial (day 27). The growth rate of BSFL showed a higher value when the larvae were reared on B substrate (4.4 and 3.2 mg/day for B and M, respectively; P < 0.01). The rearing substrate did not significantly affect the proximate composition of BSFL. The percentage of total lipids (TL) in M-fed BSFL was significantly higher than in B ones. Total saturated (P < 0.001) and monounsaturated fatty acids (P < 0.05) were significantly higher in M-fed BSFL, while an opposite trend was observed for total branched-chain (P < 0.001) and total polyunsaturated fatty acids (P < 0.001). Interestingly, some conjugated linoleic acid (CLA) isomers [i.e., C18:2 c9t11(+t7c9+t8c10) and t9t11] were detected in low amounts in both rearing substrates (total CLA equal to 0.085 and 0.16 g/100 g TL in B and M substrate, respectively). Some CLA isomers (i.e., C18:2 c9t11, t7c9, and t10c12) were also found in BSFL, reaching a total CLA concentration equal to 2.95 and 0.052 g/100 g of TL in B-fed and M-fed BSFL, respectively. This study demonstrates that winery by-products from different grape varieties can significantly affect the development and lipid composition of BSFL. The CLA biosynthesis potential of BSFL opens newsworthy perspectives for a new valorisation of winery by-products to produce full-fat black soldier fly meal and black soldier fly oil enriched in specific fatty acids of potential health-promoting interest.
Collapse
Affiliation(s)
- M Renna
- Department of Veterinary Sciences, University of Turin, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy
| | - L Gasco
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy.
| | - L Livorsi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy
| | - M Mele
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - G Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - M Meneguz
- BEF Biosystems S.r.l., Strada di Settimo, 224/15, 10156 Turin (TO), Italy
| | - C Lussiana
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo P. Braccini, 2, 10095 Grugliasco (TO), Italy
| |
Collapse
|
5
|
Loiotine Z, Gasco L, Biasato I, Resconi A, Bellezza Oddon S. Effect of larval handling on black soldier fly life history traits and bioconversion efficiency. Front Vet Sci 2024; 11:1330342. [PMID: 38288139 PMCID: PMC10822952 DOI: 10.3389/fvets.2024.1330342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/03/2024] [Indexed: 01/31/2024] Open
Abstract
Introduction The black soldier fly is considered the most promising insect species for mass production; however, information on the effects of handling, which is unavoidable during experimental trials and rearing practices, is still limited. Materials and methods To address this gap, three different manipulation intensities were tested on 100 6-day-old larvae per replica (6 replicates/treatments) fed on Gainesville diet: (1) hard-handled (HH), larvae underwent continuous manipulation until the end of larval stage, (2) soft-handled (SH), larvae were manipulated after the appearance of the first prepupa, (3) no-handled (NH), larvae remained untouched. Every 4 days from the beginning to the end of the larval stage, the manipulations lasted 30 min and occurred under laboratory conditions (20°C). During the sampling operations, at least 30 larvae were randomly extracted, washed, dried, and weight-mimicked. At the end of larval stage, all the boxes remained untouched until the adult fly stage, and the emergency rate and sex ratio were evaluated on dead flies. Data were statistically analyzed using IBM SPSS V20.0.0 software and the considered significance level was p < 0.05. Results The larval stage lasted 8.2 days for both HH and SH (p > 0.05). Despite the HH larvae being the most manipulated, no difference was also observed in final weight (HH, 160 mg; SH, 150 mg; p > 0.05) and survival rate (HH, 96.2%; SH, 94.5%; p > 0.05). The manipulation did not influence the bioconversion capacity of the larvae (bioconversion efficiency corrected for the residue: HH, 14.3%; SH, 12.91%; reduction rate: HH, 58.4%; SH, 55.9%; waste reduction index: HH, 7.28%/day; SH, 7.25%/day; p > 0.05). Finally, the development time from larva to fly (about 20.7; p > 0.05), the emergency rate (NH: 92.8%; SH: 89.5%; HH: 82.7%) and sex ratio (~1.2% to male flies) were not affected by the handling (p > 0.05). Discussion In conclusion, the handling procedures used in the current study did not influence the life history traits of the black soldier fly. However, further studies are needed to evaluate if different experimental protocols on various scales, the colony strain or other handling procedures may suggest a different scenario or confirm the results.
Collapse
Affiliation(s)
| | | | - Ilaria Biasato
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, TO, Italy
| | | | | |
Collapse
|
6
|
Laconi EB, Jayanegara A, Astuti DA, Fitriana EL, Nabawi SNL, Alifian MD. Evaluation of rations containing bioconverted cacao pod as fiber source for small ruminant. Trop Anim Health Prod 2023; 55:422. [PMID: 38012359 DOI: 10.1007/s11250-023-03843-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
This study aimed to evaluate the potential use of bioconverted cacao pod (BCP) as a substitute for forage in the total mixed ration (TMR) for a small ruminant. In the in vitro experiment, the control TMR (30% forage and 70% concentrate) was substituted with two different levels of BCP (15% and 30%) and two different types of BCP ( BCP-pc and BCP-tv). Based on the in vitro evaluation, the best ration was then chosen for the in vivo experiment, in which male goats were fed a control TMR, the TMR containing 15% BCP-pc (RC), and TMR containing 15% bioconverted palm kernel meal (RP). The results showed that TMRs with 15% BCP-pc and BCP-tv substitution had significantly lower gas production and digestibility than the control ration. However, the TMR with 15% or 30% BCP substitution showed no significant difference in rumen fermentation characteristics, methane production, and total protozoa. In the in vivo experiment, the RC showed no significant difference in all nutrient intakes, the average daily gain of animals, feed conversion ratio value, and crude fiber digestibility but reduced dry and organic matter digestibility. In comparison, the RP resulted in reduced parameters. Therefore, the study concluded that BCP-pc at a level of 15% could be used as a substitute for forage in TMR for male goats without compromising the fermentability of rumen, nutrient intakes, and their average daily gain and feed conversion ratio. Overall, this study suggests the potential of BCP-pc as an alternative feed ingredient.
Collapse
Affiliation(s)
- Erika Budiarti Laconi
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia.
| | - Anuraga Jayanegara
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Dewi Apri Astuti
- Department of Nutrition and Feed Technology, Faculty of Animal Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Eko Lela Fitriana
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Soviro Nurul Lisa Nabawi
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| | - Mochamad Dzaky Alifian
- Graduate Study Program of Nutrition and Feed Science, IPB University, Jl. Agatis, Kampus IPB Darmaga, Bogor, 16680, Indonesia
| |
Collapse
|
7
|
Liang J, Cheng Y, Ma Y, Yu X, Wang Z, Wu N, Wang X, Liu X, Xu X. Effects of straw addition on the physicochemical and microbial features of black soldier fly larvae frass derived from fish meat and bone meal. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2023; 41:1435-1444. [PMID: 36951008 DOI: 10.1177/0734242x231160091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Black soldier fly larvae (BSFL) hold great promise for sustainable management of meat and bone meal (MBM), a kind of organic waste. Harvested BSFL frass can be used as soil amendment or organic fertilizer. This study evaluated the quality and microbial profile in the frass of BSFL, fed with fish MBM containing 0% (CK), 1% (T1), 2% (T2) and 3% (T3) of rice straw. Results suggested straw addition into fish MBM had no significant impacts on BSFL weight; however, straw addition remarkably affected waste reduction and conversion efficiency, as well as physicochemical properties including electric conductivity, organic matter (OM) and total phosphorus contents in frass. Fourier transform infrared analysis indicated that increasing levels of cellulose and lignin might not be fully degraded or transformed by BSFL when more straw was introduced into substrates. Straw addition had hardly significant influences on microbial richness or evenness in BSFL frass, only T3 treatment remarkably elevated the phylogenetic diversity value more than the control. Bacteroidetes, Proteobacteria, Actinobacteria and Firmicutes were the most dominant phyla. Genera Myroides, Acinetobacter and Paenochrobactrum maintained high abundances in all frass samples. Elements including OM, pH and Na were key factors in shaping the microbiological characteristics of BSFL frass. Our findings helped to understand the effects of fish MBM waste manipulation on BSFL frass qualities and contributed to the further application of BSFL frass.
Collapse
Affiliation(s)
- Jiaqi Liang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Yixian Cheng
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Ye Ma
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xiaohui Yu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Zhiqiang Wang
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaobo Wang
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| | - Xinyuan Liu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, China
| | - Xiaoyan Xu
- College of Agronomy and Resource and Environment, Tianjin Agricultural University, Tianjin, China
| |
Collapse
|
8
|
Eke M, Tougeron K, Hamidovic A, Tinkeu LSN, Hance T, Renoz F. Deciphering the functional diversity of the gut microbiota of the black soldier fly (Hermetia illucens): recent advances and future challenges. Anim Microbiome 2023; 5:40. [PMID: 37653468 PMCID: PMC10472620 DOI: 10.1186/s42523-023-00261-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023] Open
Abstract
Bioconversion using insects is a promising strategy to convert organic waste (catering leftovers, harvest waste, food processing byproducts, etc.) into biomass that can be used for multiple applications, turned into high added-value products, and address environmental, societal and economic concerns. Due to its ability to feed on a tremendous variety of organic wastes, the black soldier fly (Hermetia illucens) has recently emerged as a promising insect for bioconversion of organic wastes on an industrial scale. A growing number of studies have highlighted the pivotal role of the gut microbiota in the performance and health of this insect species. This review aims to provide a critical overview of current knowledge regarding the functional diversity of the gut microbiota of H. illucens, highlighting its importance for bioconversion, food safety and the development of new biotechnological tools. After providing an overview of the different strategies that have been used to outline the microbial communities of H. illucens, we discuss the diversity of these gut microbes and the beneficial services they can provide to their insect host. Emphasis is placed on technical strategies and aspects of host biology that require special attention in the near future of research. We also argue that the singular digestive capabilities and complex gut microbiota of H. illucens make this insect species a valuable model for addressing fundamental questions regarding the interactions that insects have evolved with microorganisms. By proposing new avenues of research, this review aims to stimulate research on the microbiota of a promising insect to address the challenges of bioconversion, but also fundamental questions regarding bacterial symbiosis in insects.
Collapse
Affiliation(s)
- Maurielle Eke
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Kévin Tougeron
- UMR CNRS 7058 EDYSAN (Ecologie et Dynamique des Systèmes Anthropisés), Université de Picardie Jules Verne, Amiens, 80039 France
- Research Institute in Bioscience, Université de Mons, Mons, 7000 Belgium
| | - Alisa Hamidovic
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - Leonard S. Ngamo Tinkeu
- Department of Biological Sciences, University of Ngaoundéré, PO BOX 454, Ngaoundéré, Cameroon
| | - Thierry Hance
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
| | - François Renoz
- Biodiversity Research Centre, Earth and Life Institute, UCLouvain, 1348, Louvain-la-Neuve, Belgium
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8634 Japan
| |
Collapse
|
9
|
Son J, Park SH, Jung HJ, You SJ, Kim BG. Effects of Drying Methods and Blanching on Nutrient Utilization in Black Soldier Fly Larva Meals Based on In Vitro Assays for Pigs. Animals (Basel) 2023; 13:ani13050858. [PMID: 36899715 PMCID: PMC10000218 DOI: 10.3390/ani13050858] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
The objective was to determine the effects of drying and blanching methods on the nutrient utilization of black soldier fly larva (BSFL; Hermetia illucens) meal by pigs using in vitro assays. Two-step and three-step in vitro assays were employed to simulate the gastrointestinal tract of pigs. Four BSFL meals were prepared using the following pretreatment methods: (1) microwave drying at 80 °C for 32 min, (2) hot-air drying at 60 °C for 17 h, (3) blanching for 5 min in boiling water and hot-air drying at 60 °C for 17 h, and (4) 2% citric acid solution blanching for 5 min in boiling solution and hot-air drying at 60 °C for 17 h. After the drying process, each BSFL was defatted and ground to obtain BSFL meals. The nitrogen (N) concentration in the test ingredients ranged from 8.5 to 9.4%, and the ether extract ranged from 6.9 to 11.5% on an as-is basis. The amino acid (AA) concentration in the BSFL meals ranged from 2.80 to 3.24% for Lys and 0.71 to 0.89% for Met on an as-is basis. Hot-air-dried BSFL meal had a greater in vitro ileal disappearance (IVID) of N compared with microwave-dried BSFL meal (p < 0.05). However, blanched BSFL meals in water or 2% citric acid solution before hot-air drying had a lower (p < 0.05) IVID of N compared with microwave-dried or hot-air-dried BSFL meal. Blanched BSFL meals in water or 2% citric acid solution before hot-air drying showed a lower (p < 0.05) in vitro total tract disappearance of dry matter and organic matter compared with microwave-dried or hot-air-dried BSFL meal. Microwave-dried BSFL meal had a lower (p < 0.05) IVID of indispensable AA, except for His, Lys, Met, and Phe, compared with hot-air-dried BSFL meals. However, blanched BSFL meals in water or 2% citric acid solution before hot-air drying showed a lower (p < 0.05) IVID of indispensable AA compared with microwave-dried or hot-air-dried BSFL meal. In conclusion, hot-air-dried BSFL meal presented greater nutrient utilization compared with microwave-dried BSFL meal for pigs. However, blanching in water or citric acid solution negatively affected the nutrient digestibility of BSFL meal based on in vitro assays.
Collapse
Affiliation(s)
- Jeonghyeon Son
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea
| | - Seol Hwa Park
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyun Jung Jung
- Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sun Jong You
- Feed R&D, CJ Feed & Care, Seoul 04548, Republic of Korea
| | - Beob Gyun Kim
- Department of Animal Science, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: ; Tel.: +82-2-2049-6255
| |
Collapse
|
10
|
Liu Y, Liu J, He J, Lu H, Sun S, Ji F, Dong X, Bao Y, Xu J, He G, Xu W. Chronological and Carbohydrate-Dependent Transformation of Fatty Acids in the Larvae of Black Soldier Fly Following Food Waste Treatment. Molecules 2023; 28:molecules28041903. [PMID: 36838890 PMCID: PMC9963906 DOI: 10.3390/molecules28041903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/09/2023] [Accepted: 02/12/2023] [Indexed: 02/19/2023] Open
Abstract
Although black soldier fly larvae (BSFL) can convert food waste into insectile fatty acids (FAs), the chronological and diet-dependent transformation of larval FAs has yet to be determined. This study focused on the dynamics of larval FA profiles following food waste treatment and characterized factors that may drive FA composition and bioaccumulation. Larval FA matters peaked on Day 11 as 7.7 ± 0.7% of food waste dry matter, maintained stably from Day 11-19, and decreased slightly from Day 19-21. The BSFL primarily utilized waste carbohydrates for FA bioconversion (Day 0-11) and shifted to waste FAs (Day 7-17) when the carbohydrates were close to depletion. The optimal time window for larvae harvest was Days 17-19, which fulfilled both targets of waste oil removal and larval FA transformation. Larval FAs were dominated by C12:0, followed by C18:2, C18:1, and C16:0. The waste-reducing carbohydrate primarily accounted for larval FA bioaccumulation (r = -0.947, p < 0.001). The increase in diet carbohydrate ratio resulted in the elevation of larval C12:0 yield, which indicated that larval C12:0-FA was primarily biosynthesized from carbohydrates and further transformed from ≥C16 FAs. This study elucidates the bioaccumulation process of larval FAs for food waste treatment and highlights the importance of waste carbohydrates for both the composition and transformation of larval FAs.
Collapse
Affiliation(s)
- Yanxia Liu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Junliang Liu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Jinwen He
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Hongxu Lu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Shibo Sun
- School of Life and Pharmaceutical Sciences (LPS), Dalian University of Technology, Panjin 124221, China
| | - Fengyun Ji
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Xiaoying Dong
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Yongming Bao
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
| | - Jianqiang Xu
- School of Life and Pharmaceutical Sciences (LPS), Dalian University of Technology, Panjin 124221, China
- Correspondence: (J.X.); (W.X.)
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Weiping Xu
- School of Ocean Science and Technology (OST) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin 124221, China
- Correspondence: (J.X.); (W.X.)
| |
Collapse
|
11
|
Monitoring Compositional Changes in Black Soldier Fly Larvae (BSFL) Sourced from Different Waste Stream Diets Using Attenuated Total Reflectance Mid Infrared Spectroscopy and Chemometrics. Molecules 2022; 27:molecules27217500. [PMID: 36364327 PMCID: PMC9655441 DOI: 10.3390/molecules27217500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Black soldier fly (Hermetia illucens, L.) larvae are characterized by their ability to convert a variety of organic matter from food waste into a sustainable source of food (e.g., protein). This study aimed to evaluate the use of attenuated total reflectance (ATR) mid-infrared (MIR) spectroscopy to monitor changes in the composition as well as to classify black soldier fly larvae (BSFL) samples collected from two growth stages (fifth and sixth instar) and two waste stream diets (bread and vegetables, soy waste). The BSFL samples were fed on either a soy or bread-vegetable mix waste in a control environment (temperature 25 °C, and humidity 70%). The frass and BSFL samples harvested as fifth and sixth instar samples were analyzed using an ATR-MIR instrument where frequencies at specific wavenumbers were compared and evaluated using different chemometric techniques. The PLS regression models yield a coefficient of determination in cross-validation (R2) > 0.80 for the prediction of the type of waste used as diet. The results of this study also indicated that the ratio between the absorbances corresponding to the amide group (1635 cm−1) and lipids (2921 + 2849 cm−1) region was higher in diets containing a high proportion of carbohydrates (e.g., bread-vegetable mix) compared with the soy waste diet. This study demonstrated the ability of MIR spectroscopy to classify BSFL instar samples according to the type of waste stream used as a diet. Overall, ATR-MIR spectroscopy has shown potential to be used as tool to evaluate and monitor the development and growth of BSFL. The utilization of MIR spectroscopy will allow for the development of traceability systems for BSFL. These tools will aid in risk evaluation and the identification of hazards associated with the process, thereby assisting in improving the safety and quality of BSFL intended to be used by the animal feed industry.
Collapse
|
12
|
IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol Ecol 2022; 98:fiac094. [PMID: 35977400 PMCID: PMC9453823 DOI: 10.1093/femsec/fiac094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.
Collapse
Affiliation(s)
- Freek IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Jeroen De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, B-3001, Belgium
| | - Leen Van Campenhout
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| |
Collapse
|
13
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
14
|
Riekkinen K, Väkeväinen K, Korhonen J. The Effect of Substrate on the Nutrient Content and Fatty Acid Composition of Edible Insects. INSECTS 2022; 13:insects13070590. [PMID: 35886766 PMCID: PMC9321513 DOI: 10.3390/insects13070590] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/16/2022] [Accepted: 06/24/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary The search of new sustainably produced protein sources for food and feed is vigorously under investigation. One promising possibility is to increase the use of edible insects as a part of our diet. The nutrient content of edible insects, in particular, a high content of good quality protein and unsaturated fatty acids with essential fatty acids, is an important health aspect when screening the most potential insect species for human consumption. Based on this review, the substrate affects the nutrient content of insects. Moreover, our correlation calculations demonstrated that the fatty acid content of the substrate influences the nutritional value of insects. In general, high content of unsaturated fatty acids in the substrate increased the amount of unsaturated fatty acids in insects. For example, the content of essential fatty acids, linoleic and alpha linolenic acids, can be raised by feeding insects with modified substrate. Thus, edible insects can be a healthy protein source to ease the increased demand for high quality food. Abstract Demand for new food sources and production methods is increasing due to overall population growth, as well as the aim towards more sustainable use of natural resources and circular economy. Edible insects already used in many parts of the world have recently attracted interest as a new protein source in Europe, and novel food acceptance procedures are ongoing in the European Union for several insect species. In this paper, the effects of substate on the nutritional value, especially the fatty acid composition, of edible insects were reviewed and correlation calculations performed. The nutritional value of edible insects is an important health aspect, in particular, a high content of good-quality protein and unsaturated fatty acids with essential fatty acids, and an optimal fatty acid n6/n3 ratio. On the basis of our findings, the nutrient content of insects can be modified by using a feed substrate carefully designed for each individual insect species. In addition, our correlation calculations demonstrated that the contents of linoleic and alpha linolenic acids in insects reflected the contents of these acids in the substrate. In conclusion, optimizing the composition and structure of the substrate and rearing conditions and duration for each insect species might also aid standardization of the nutritional composition of edible insects.
Collapse
|
15
|
Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review. FERMENTATION 2021. [DOI: 10.3390/fermentation7040304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increased development of aquaculture has resulted in increased demand for high-protein aquafeed. An increased demand for high-protein aquafeed means an increase in exploitation of unsustainable protein sources such as fishmeal for aquafeed production. Thus, alternative protein sources such as fermented macroalgae is explored. Fermented macroalgae had been tested as aquaculture diets in some studies, but with limited coverage in relation to aquaculture. Therefore, this review provides a new perspective regarding their nutritional qualities as aquaculture diets, and their impacts on growth performances of aquaculture animals.
Collapse
|
16
|
Smets R, Claes J, Van Der Borght M. On the nitrogen content and a robust nitrogen-to-protein conversion factor of black soldier fly larvae (Hermetia illucens). Anal Bioanal Chem 2021; 413:6365-6377. [PMID: 34379169 DOI: 10.1007/s00216-021-03595-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 11/29/2022]
Abstract
Currently, a broad discussion exists in the literature regarding insect protein analysis. At its core, main difficulties and uncertainties are the inconsistent use of analysis methods and nitrogen-to-protein conversion (kP) factors. While the Kjeldahl and Dumas methods are both used in the literature, their result represents inherently different nitrogen fractions. Thus far, no correlation between them is established for insect matrices, which is a major uncertainty. Although much effort has been made towards more accurate kP factors, calculation of these was based on merely one sample while the chemical composition varies depending on rearing conditions. Using a broad variation in black soldier fly (BSF) larvae samples in the present study, a correlation between Kjeldahl and Dumas and a robust kP factor have been established. Moreover, the nitrogen distribution of BSF samples was also assessed after accurate chitin analyses. A highly significant linear correlation existed between the results of Kjeldahl and Dumas (slope, 1.009; intercept, - 0.008; R2, 0.9997). Consequently, both methods were deemed interchangeable for BSF larvae. Using amino acid data, a practical, more accurate and robust kP factor of 4.43 was obtained. Concerning the chitin content, the average of all BSF larvae samples was 5.95 ± 0.86 g N-acetylglucosamine/100 g dry matter and no correlation with the kP factor was observed. Regarding the nitrogen distribution of the samples, it was found that the contribution of nitrogenous compounds other than protein and chitin is not only high but also prone to variation (12-30% of the total nitrogen content).
Collapse
Affiliation(s)
- Ruben Smets
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems, KU Leuven, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Johan Claes
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems, KU Leuven, Kleinhoefstraat 4, 2440, Geel, Belgium
| | - Mik Van Der Borght
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems, KU Leuven, Kleinhoefstraat 4, 2440, Geel, Belgium.
| |
Collapse
|
17
|
Impact of Diets Including Agro-Industrial By-Products on the Fatty Acid and Sterol Profiles of Larvae Biomass from Ephestia kuehniella, Tenebrio molitor and Hermetia illucens. INSECTS 2021; 12:insects12080672. [PMID: 34442238 PMCID: PMC8396641 DOI: 10.3390/insects12080672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 02/05/2023]
Abstract
Simple Summary Insects are a promising source of lipids. Their fatty acid compositions can vary as a function of diet composition, rearing conditions and developmental stage. In the present study, different agro-industrial by-products were used to feed the insects. Then, the fatty acids and sterols were determined. Notably, these profiles were assessed for the first time for E. kuehniella. According to our results, fatty acid profiles showed differences depending on diet composition, but mostly depended on species. Sterols varied significantly as a function of diet composition and species, showing low cholesterol and high campesterol and β-sitosterol levels in H. illucens, and high cholesterol and low campesterol contents in T. molitor and E. kuehniella. These results suggest that insects are an interesting alternative source of fat for humans and animals, which might promote the use of insects for circular economy practices. Abstract Rearing insects on agro-industrial by-products is a sustainable strategy for the circular economy while producing valuable products for feed and foods. In this context, this study investigated the impact of larvae diet containing agro-industrial by-products on the contents of fatty acids and sterols of Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae), Tenebrio molitor (L.) (Coleoptera: Tenebrionidae), and Hermetia illucens (L.) (Diptera: Stratiomyidae). For each insect, selected diets were formulated using single or combined agro-industrial by-products (i.e., apricot, brewer’s spent grain and yeast, and feed mill) and compared to a control diet. Fatty acid profiles showed differences depending on diet composition, but mostly depended on species: H. illucens was characterized by the abundance of C12:0, C16:0 and C18:2, whereas C:16, C18:1(n-9c), and C18:2(n-6c) were predominant in T. molitor and E. kuehniella. Sterols significantly varied as a function of diet composition and species. H. illucens showed low cholesterol levels and high campesterol and β sitosterol levels (0.031, 0.554 and 1.035 mg/g, respectively), whereas T. molitor and E. kuehniella had high cholesterol and low campesterol contents (1.037 and 0.078 g/kg, respectively, for T. molitor; 0.873 and 0.132 g/kg, respectively, for E. kuehniella).
Collapse
|
18
|
Gorrens E, Van Moll L, Frooninckx L, De Smet J, Van Campenhout L. Isolation and Identification of Dominant Bacteria From Black Soldier Fly Larvae ( Hermetia illucens) Envisaging Practical Applications. Front Microbiol 2021; 12:665546. [PMID: 34054771 PMCID: PMC8155639 DOI: 10.3389/fmicb.2021.665546] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/15/2021] [Indexed: 11/13/2022] Open
Abstract
This study aimed to establish a representative strain collection of dominant aerobic bacteria from black soldier fly larvae (Hermetia illucens, BSFL). The larvae were fed either chicken feed or fiber-rich substrates to obtain a collection of BSFL-associated microorganisms. Via an approach based on only considering the highest serial dilutions of BSFL extract (to select for the most abundant strains), a total of 172 bacteria were isolated. Identification of these isolates revealed that all bacteria belonged to either the Proteobacteria (66.3%), the Firmicutes (30.2%), the Bacteroidetes (2.9%) or the Actinobacteria (0.6%). Twelve genera were collected, with the most abundantly present ones (i.e., minimally present in at least three rearing cycles) being Enterococcus (29.1%), Escherichia (22.1%), Klebsiella (19.8%), Providencia (11.6%), Enterobacter (7.6%), and Morganella (4.1%). Our collection of dominant bacteria reflects largely the bacterial profiles of BSFL already described in literature with respect to the most important phyla and genera in the gut, but some differences can be noticed depending on substrate, biotic and abiotic factors. Furthermore, this bacterial collection will be the starting point to improve in vitro digestion models for BSFL, to develop mock communities and to find symbionts that can be added during rearing cycles to enhance the larval performances, after functional characterization of the isolates, for instance with respect to enzymatic potential.
Collapse
Affiliation(s)
- Ellen Gorrens
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Laurence Van Moll
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium.,Laboratory for Microbiology, Parasitology and Hygiene (LMPH), Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Lotte Frooninckx
- Thomas More University of Applied Sciences, RADIUS, Geel, Belgium
| | - Jeroen De Smet
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| | - Leen Van Campenhout
- Department of Microbial and Molecular Systems (M2S), Lab4Food, KU Leuven, Geel, Belgium.,Leuven Food Science and Nutrition Research Centre (LFoRCe), KU Leuven, Leuven, Belgium
| |
Collapse
|
19
|
Rumbos CI, Athanassiou CG. 'Insects as Food and Feed: If You Can't Beat Them, Eat Them!'-To the Magnificent Seven and Beyond. JOURNAL OF INSECT SCIENCE (ONLINE) 2021; 21:9. [PMID: 33822126 PMCID: PMC8023366 DOI: 10.1093/jisesa/ieab019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 05/04/2023]
Abstract
The objective of this special issue is to highlight the current state of research in the field of insects as food and feed, but also other aspects on the exploitation of insect farming. In this editorial, we make a short introduction of the topic of the special issue, briefly present the contributions that are collected in it and offer some thoughts on the future research priorities and challenges that should be addressed. Regarding insect farming, there are additional applications, such as fertilizer, health-promoting products, and cosmetics, that can be produced and utilized, that go far beyond food and feed production.
Collapse
Affiliation(s)
- Christos I Rumbos
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Christos G Athanassiou
- Laboratory of Entomology and Agricultural Zoology, Department of Agriculture, Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| |
Collapse
|