1
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Transcriptome analysis of Holotrichia oblita reveals differentially expressed unigenes related to reproduction and development under different photoperiods. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100959. [PMID: 35033741 DOI: 10.1016/j.cbd.2022.100959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/19/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Holotrichia oblita (Faldermann) (Coleoptera: Scarabaeidae) is an insect whose feeding and mating behaviors occur at night. A scotophase is necessary for H. oblita reproduction. We used RNA sequencing (RNA-seq) to compare the expression patterns of H. oblita at five photoperiods (0:24, 8:16, 12:12, 16:8, and 24:0 h) (L:D). Compared to the control (24:0) (L:D), 161-684 differentially expressed unigenes (DEUs) were found in female samples, while 698-2322 DEUs were found in male samples. For all DEUs, a total of 92-1143 DEUs were allocated to 116-662 categories of gene ontology (GO), and 81-1116 DEUs were assigned into 77-286 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The iPath diagram showed that the DEUs generated by comparing female and male samples with photoperiods of 0:24 and 24:0, respectively, involved multiple metabolic pathways, such as carbohydrate metabolism, lipid metabolism, nucleotide metabolism, purine metabolism and glutathione metabolism. Most of these DEUs were upregulated. Finally, 13 DEUs related to reproduction and development were selected to confirm the consistency of relative expression between RNA-Seq and quantitative real-time polymerase chain reaction (qRT-PCR). Most of these comparison results agreed well, except for some qRT-PCR results that were not detected in male samples due to their low expression. These results provide useful information for understanding the dark-induced reproduction of H. oblita.
Collapse
Affiliation(s)
- Minghui Xie
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Yongzhi Zhong
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Lulu Lin
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Guangling Zhang
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Weihua Su
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - WanLi Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao 266100, China.
| | - Haoliang Chen
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230031, China.
| |
Collapse
|
2
|
Xie MH, Zhong YZ, Lin LL, Zhang GL, Su WH, Ni WL, Qu MJ, Chen HL. Effect of Photoperiod on Longevity, Food Consumption, and Reproduction of Holotrichia oblita (Coleoptera: Scarabaeidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:1151-1157. [PMID: 34240131 DOI: 10.1093/ee/nvab066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Indexed: 06/13/2023]
Abstract
Holotrichia oblita (Faldermann) (Coleoptera: Scarabaeidae) is a major soil insect pest that damages forest trees, crops, and lawns. Adults of H. oblita fly, forage, and mate at night but remain underground during the day. We studied the effect of photoperiod on H. oblita reproduction. H. oblita females laid more eggs at 8:16 (L:D) h and 0:24 (L:D) h than other photoperiods. As the scotophase increased, the preoviposition period decreased and the oviposition period increased. Female longevity exceeded that of males at all photoperiods, and both males and females at 0:24 (L:D) h had the shortest longevity. The number of eggs laid per female increased with increasing food consumption. Females at 8:16 (L:D) h had the greatest food consumption and laid the most eggs, while females at 24:0 (L:D) h had the lowest food consumption and laid few eggs. The food intake of adults increased gradually and decreased slowly after reaching a peak. Females began to lay eggs when their food consumption reached a maximum. These results indicate that a scotophase is necessary for the reproduction of H. oblita. A long scotophase promotes greater oviposition. The effect of photoperiod on reproduction is affected by food intake.
Collapse
Affiliation(s)
- Ming-Hui Xie
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Yong-Zhi Zhong
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Lu-Lu Lin
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Guang-Ling Zhang
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Wei-Hua Su
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Wan-Li Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, PR China
| | - Ming-Jing Qu
- Shandong Peanut Research Institute, Qingdao, PR China
| | - Hao-Liang Chen
- Anhui-CABI Joint laboratory for Agricultural Pest Control, Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, PR China
| |
Collapse
|
3
|
Wang K, Liu Q, Liu C, Geng L, Wang G, Zhang J, Shu C. Dominant egg surface bacteria of Holotrichia oblita (Coleoptera: Scarabaeidae) inhibit the multiplication of Bacillus thuringiensis and Beauveria bassiana. Sci Rep 2021; 11:9499. [PMID: 33947948 PMCID: PMC8096819 DOI: 10.1038/s41598-021-89009-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 04/13/2021] [Indexed: 02/01/2023] Open
Abstract
Holotrichia oblita (Coleoptera: Scarabaeidae) and some other scarab beetles are the main soil-dwelling pests in China. Bacillus thuringiensis (Bt) and Beauveria bassiana (Bb) are entomopathogens that have been used as biocontrol agents of various pests. However, scarab larvae especially H. oblita exhibited strong adaptability to these pathogens. Compared to other scarabs, H. oblita could form a specific soil egg case (SEC) structure surrounding its eggs, and young larvae complete the initial development process inside this structure. In this study, we investigated the role of SEC structure and microorganisms from SEC and egg surface in pathogen adaptability. 16S rRNA gene analysis revealed low bacterial richness and high community unevenness in egg surface, with Proteobacteria, Firmicutes, Bacteroidetes and Fusobacteria dominating. In terms of OTUs composition analysis, the data show that the egg surface contains a large number of unique bacteria, indicating that the egg bacterial community may be derived from maternal transmission. Furthermore, we found that all culturable bacteria isolated from egg surface possessed antimicrobial activity against both Bt and Bb. The Pseudomonas bacteria with a significantly higher abundance in egg surface showed strong Bt- and Bb antagonistic ability. In conclusion, this study demonstrated a unique and antimicrobial bacterial community of H. oblita egg surface, which may contribute to its adaptability. Furthermore, the specific SEC structure surrounding the H. oblita eggs will provide a stable microenvironment for the eggs and egg surface bacteria, which probably provides more advantages for H. oblita adaptation ability.
Collapse
Affiliation(s)
- Kui Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qi Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Chunqin Liu
- Cangzhou Academy of Agricultural and Forestry Sciences, Cangzhou, 061001, China
| | - Lili Geng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Guirong Wang
- Guangdong Laboratory for Lingnan Modern Agriculture (Shenzhen Branch), Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jie Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Changlong Shu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
4
|
Xie M, Zhong Y, Lin L, Zhang G, Su W, Ni W, Qu M, Chen H. Evaluation of reference genes for quantitative real-time PCR normalization in the scarab beetle Holotrichia oblita. PLoS One 2020; 15:e0240972. [PMID: 33085726 PMCID: PMC7577503 DOI: 10.1371/journal.pone.0240972] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
Quantitative real-time polymerase chain reaction (qPT-PCR) is commonly used to analyze gene expression, however, the accuracy of the normalized results is affected by the expression stability of reference genes. Holotrichia oblita (Coleoptera: Scarabaeidae) causes serious damage to crops. Reliable reference genes in H. oblita are needed for qRT-PCR analysis. Therefore, we evaluated 13 reference genes under biotic and abiotic conditions. RefFinder provided a comprehensive stability ranking, and geNorm suggested the optimal number of reference genes for normalization. RPL13a and RPL18 were the most suitable reference genes for developmental stages, tissues, and temperature treatments; RPL13a and RPS3 were the most suitable for pesticide and photoperiod treatments; RPS18 and RPL18 were the most suitable for the two sexes. We validated the normalized results using odorant-binding protein genes as target genes in different tissues. Compared with the selected suitable reference genes, the expression of OBP1 in antennae, abdomen, and wings, and OBP2 in antennae and wings were overestimated due to the instability of ACTb. These results identified several reliable reference genes in H. oblita for normalization, and are valuable for future molecular studies.
Collapse
Affiliation(s)
- Minghui Xie
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Yongzhi Zhong
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Lulu Lin
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Guangling Zhang
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Weihua Su
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Wanli Ni
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| | - Mingjing Qu
- Shandong Peanut Research Institute, Qingdao, Shandong, China
| | - Haoliang Chen
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, Anhui, China
| |
Collapse
|