1
|
Qian K, Wan Y, Yuan J, Tang Y, Zheng X, Wang J, Cao H, Zhang Y, Chen S, Zhang Y, Wu Q. Identification and analysis of JHBP/TO family genes and their roles in the reproductive fitness cost of resistance in Frankliniella occidentalis (Pergande). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 204:106058. [PMID: 39277374 DOI: 10.1016/j.pestbp.2024.106058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 09/17/2024]
Abstract
The juvenile hormone binding protein (JHBP) and takeout (TO) genes, mediated by the juvenile hormone (JH), play a crucial role in regulating the reproductive physiology of insects. Our previous study revealed that spinosad-resistant Frankliniella occidentalis (NIL-R) exhibited reduced fecundity and significant changes in JHBP/TO family gene expression. We hypothesized that these genes were involved in regulating the fitness costs associated with resistance. In this study, 45 JHBP/TO genes were identified in F. occidentalis, among which FoTO2 and FoTO10 were duplicates. Additionally, eight genes exhibited significant down-regulation in the NIL-R population. Two genes (FoTO6 and FoTO24) that exhibited the most significant differential expression between the spinosad-susceptible (Ivf03) and NIL-R populations were selected to investigate their roles in resistance fitness using RNA interference (RNAi). Following interference with FoTO6, FoTO24, and their combination, the expression levels of vitellogenin (Vg) were downregulated by 3%-30%, 13%-28%, and 14%-32% from the 2nd day to the 5th day, respectively; Krüppel-homolog 1 (Kr-h1) expression was down-regulated by 3%-65%, 11%-34%, and 11%-39% from the 2nd day to the 5th day, respectively; ovariole length was shortened by approximately 18%, 21%, and 24%, respectively; and the average number of eggs decreased from 407 to 260, 148, and 106, respectively. Additionally, a JH supplementation experiment on the NIL-R population revealed that the expression levels of both FoTO6, FoTO24, Vg and Kr-h1 were significantly upregulated compared with those observed in the Ivf03 population, resulting in increased fecundity. These results suggest that FoTO6 and FoTO24 are involved in JH-mediated regulation of the reproductive fitness cost of resistance to spinosad. Further, FoTO6 and FoTO24 can be considered potential target genes for applying RNAi technology in the scientific management of F. occidentalis.
Collapse
Affiliation(s)
- Kanghua Qian
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yanran Wan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China; College of Plant Protection, Hebei Agricultural University, 071000, Hebei, China
| | - Jiangjiang Yuan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Yingxi Tang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Xiaobin Zheng
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Jing Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Hongyi Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Ying Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Sirui Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China
| | - Qingjun Wu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100080, China.
| |
Collapse
|
2
|
Swelam ES, Abdel-Rahman HR, Mossa ATH, Ahmed FS. Influence of temperature on the toxicity of fipronil to Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
3
|
Gong C, Wang X, Huang Q, Zhang J, Zhang Y, Zhan X, Zhang S, Hasnain A, Ruan Y, Shen L. The fitness advantages of bistrifluron resistance related to chitin synthase A in Spodoptera litura (Fab.) (Noctuidae: Lepidoptera). PEST MANAGEMENT SCIENCE 2021; 77:3458-3468. [PMID: 33822459 DOI: 10.1002/ps.6399] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/20/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Spodoptera litura is one of the major agricultural pests in China, and it has developed serious resistance to many traditional chemical insecticides. In the present study, the bistrifluron-resistant (Bis-SEL) strain accompanied by a higher oviposition, 113.8-fold RR compared to the bistrifluron-susceptible (Bis-UNSEL) strain, was obtained by bidirectional screening. A comparison of their gonad coefficiency and genes related to oviposition or resistance was used to elucidate the resurgence mechanism. RESULTS The ovarian index, oviposition, and potential egg production in the Bis-SEL strain of female adults were significantly higher than those in the Bis-UNSEL strain, and the length of ovariole in the Bis-SEL strain was also significantly elongated. The protein contents of vitellogenin (Vg) and vitellogenin receptor (VgR) in the Bis-UNSEL strain were lower than those in the Bis-SEL strain, consistent with their gene expressions levels, and there was a significantly positive linear correlation between Vg and VgR protein contents, further confirming that resistant strains have high reproductive fitness. Moreover, the chitin synthase A in the Bis-SEL strain was clearly up-regulated, and a mutation (H866Y) near the QRRRW in the catalytic domain caused a rise in the hydrogen bond between UDP-GlcNAc and chitin synthase, and its chitin content was higher than that in the Bis-UNSEL strain. Nevertheless, the sensitivity of the Bis-SEL strain to bistrifluron was significantly recovered when it was knocked down though RNA interference. CONCLUSION The fitness advantages of bistrifluron resistance may be related to the up-regulation and mution of chitin synthase A. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Changwei Gong
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xuegui Wang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Qian Huang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Jinyue Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yuming Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Xiaoxu Zhan
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Shuirong Zhang
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Ali Hasnain
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Yanwei Ruan
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| | - Litao Shen
- Biorational Pesticide Research Lab, College of Agriculture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Peng X, Wang S, Huang L, Su S, Chen M. Characterization of Rhopalosiphum padi takeout-like genes and their role in insecticide susceptibility. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104725. [PMID: 33357548 DOI: 10.1016/j.pestbp.2020.104725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/23/2020] [Accepted: 10/10/2020] [Indexed: 06/12/2023]
Abstract
Due to the extensive use of chemical insecticides, the field populations of Rhopalosiphum padi, a serious wheat pest worldwide, have developed resistance to insecticides. Therefore, deep understanding of the mechanisms of the aphid's physiological response to insecticides would be of importance for the management of insecticide resistance in pests. Takeout belongs to a protein superfamily found exclusively in insects. Previous research showed that the takeout gene had various functions in insect physiology and behavior. However, few studies have explored the functions of takeout in insect insecticide susceptibility. The susceptibility of R. padi to imidacloprid and beta-cypermethrin was tested. Thirteen takeout-like genes were identified based on the genome database of R. padi. The number of exons was variable in these takeout-like genes, and nine highly conserved amino acids (two Cysteine, two Proline, four Glycine and one Aspartic acid) were identified. Expression levels of takeout-like-2, takeout-like-3, takeout-like-5, takeout-like-8, takeout-like-10 and takeout-like-11 were significantly increased after imidacloprid treatment; seven genes (takeout-like-1, takeout-like-2, takeout-like-5, takeout-like-6, takeout-like-7, takeout-like-8 and takeout-like-11) tended to be upregulated after beta-cypermethrin treatment. RNA interference results showed that the mortalities of R. padi injected with dsTOL-2, dsTOL-5, dsTOL-8, dsTOL-10 and dsTOL-11 were significantly increased after exposure to imidacloprid in comparison with control (injection of dsGFP). Under two sublethal concentrations of beta-cypermethrin, the silencing of takeout-like-2, takeout-like-5 and takeout-like-11 significantly increased the mortalities of R. padi. These results provide evidence for the involvement of takeout-like genes in insecticide susceptibility of R. padi, which improves our understanding the determinant of insecticide susceptibility.
Collapse
Affiliation(s)
- Xiong Peng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Suji Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Lei Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Sha Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Maohua Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Crop Pest Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
5
|
Zhang BZ, Ma KS, Liu JJ, Lu LY, Chen XL, Zhang SP, Gao XW. Differential expression of genes in greenbug (Schizaphis graminum Rondani) treated by imidacloprid and RNA interference. PEST MANAGEMENT SCIENCE 2019; 75:1726-1733. [PMID: 30525307 DOI: 10.1002/ps.5293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 11/21/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Insecticides act as toxins, inhibitors of digestion and deterrents, and affect the expression of many genes in insects. To assess key genes associated with the detoxification or regulation of imidacloprid in greenbug, Schizaphis graminum (Rondani), the transcriptome and digital gene expression (DGE) profile were analyzed using Illumina sequencing. RESULTS In total, 48 763 494 clean reads were obtained by sequencing. Expression profile analysis showed that 2782 unigenes were differently expressed between the imidacloprid treatment and control groups. After exposure to imidacloprid, the expression levels of 1846 unigenes were upregulated and 936 were downregulated in comparison with controls. Expression patterns of the top 20 highly expressed genes show that they could be involved in the detoxification of imidacloprid. Silencing of multidrug resistance-associated gene (MRA), GATA-binding gene (GAT) and takeout-like precursor gene (TLP) resulted in increasing susceptibility to imidacloprid. CONCLUSIONS The differentially expressed genes in S. graminum have potential regulatory or detoxification roles in response to imidacloprid. These results should be useful in understanding the molecular mechanisms of greenbug adaption to imidacloprid. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Bai-Zhong Zhang
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Kang-Sheng Ma
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| | - Jun-Jie Liu
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Liu-Yang Lu
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Xi-Ling Chen
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Shou-Ping Zhang
- Department of Plant Protection, College of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Poeple's Republic of China
| | - Xi-Wu Gao
- Department of Entomology, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
6
|
Shu B, Zhang J, Cui G, Sun R, Sethuraman V, Yi X, Zhong G. Evaluation of Reference Genes for Real-Time Quantitative PCR Analysis in Larvae of Spodoptera litura Exposed to Azadirachtin Stress Conditions. Front Physiol 2018; 9:372. [PMID: 29695976 PMCID: PMC5904281 DOI: 10.3389/fphys.2018.00372] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/27/2018] [Indexed: 12/03/2022] Open
Abstract
Azadirachtin is an efficient and broad-spectrum botanical insecticide against more than 150 kinds of agricultural pests with the effects of mortality, antifeedant and growth regulation. Real-time quantitative polymerase chain reaction (RT-qPCR) could be one of the powerful tools to analyze the gene expression level and investigate the mechanism of azadirachtin at transcriptional level, however, the ideal reference genes are needed to normalize the expression profiling of target genes. In this present study, the fragments of eight candidate reference genes were cloned and identified from the pest Spodoptera litura. In addition, the expression stability of these genes in different samples from larvae of control and azadirachtin treatments were evaluated by the computational methods of NormFinder, BestKeeper, Delta CT, geNorm, and RefFinder. According to our results, two of the reference genes should be the optimal number for RT-qPCR analysis. Furthermore, the best reference genes for different samples were showed as followed: EF-1α and EF2 for cuticle, β-Tubulin and RPL7A for fat body, EF2 and Actin for midgut, EF2 and RPL13A for larva and RPL13A and RPL7A for all the samples. Our results established a reliable normalization for RT-qPCR experiments in S. litura and ensure the data more accurate for the mechanism analysis of azadirachtin.
Collapse
Affiliation(s)
- Benshui Shu
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Veeran Sethuraman
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Guohua Zhong
- Key Laboratory of Crop Integrated Pest Management in South China, Ministry of Agriculture, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|