1
|
Milenovic M, Ghanim M, Hoffmann L, Rapisarda C. Whitefly endosymbionts: IPM opportunity or tilting at windmills? JOURNAL OF PEST SCIENCE 2021; 95:543-566. [PMID: 34744550 PMCID: PMC8562023 DOI: 10.1007/s10340-021-01451-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/13/2021] [Accepted: 10/16/2021] [Indexed: 05/23/2023]
Abstract
Whiteflies are sap-sucking insects responsible for high economic losses. They colonize hundreds of plant species and cause direct feeding damage and indirect damage through transmission of devastating viruses. Modern agriculture has seen a history of invasive whitefly species and populations that expand to novel regions, bringing along fierce viruses. Control efforts are hindered by fast virus transmission, insecticide-resistant populations, and a wide host range which permits large natural reservoirs for whiteflies. Augmentative biocontrol by parasitoids while effective in suppressing high population densities in greenhouses falls short when it comes to preventing virus transmission and is ineffective in the open field. A potential source of much needed novel control strategies lays within a diverse community of whitefly endosymbionts. The idea to exploit endosymbionts for whitefly control is as old as identification of these bacteria, yet it still has not come to fruition. We review where our knowledge stands on the aspects of whitefly endosymbiont evolution, biology, metabolism, multitrophic interactions, and population dynamics. We show how these insights are bringing us closer to the goal of better integrated pest management strategies. Combining most up to date understanding of whitefly-endosymbiont interactions and recent technological advances, we discuss possibilities of disrupting and manipulating whitefly endosymbionts, as well as using them for pest control.
Collapse
Affiliation(s)
- Milan Milenovic
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| | - Murad Ghanim
- Department of Entomology, Volcani Center, ARO, HaMaccabim Road 68, PO Box 15159, 7528809 Rishon Le Tsiyon, Israel
| | - Lucien Hoffmann
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), 41, Rue du Brill, L-4422 Belvaux, Luxembourg
| | - Carmelo Rapisarda
- Dipartimento di Agricoltura, Università degli Studi di Catania, Alimentazione e Ambiente (Di3A), via Santa Sofia 100, 95123 Catania, Italy
| |
Collapse
|
2
|
Xavier CAD, Nogueira AM, Bello VH, Watanabe LFM, Barbosa TMC, Alves Júnior M, Barbosa L, Beserra-Júnior JEA, Boari A, Calegario R, Gorayeb ES, Honorato Júnior J, Koch G, Lima GSDA, Lopes C, de Mello RN, Pantoja K, Silva FN, Ramos Sobrinho R, Santana EN, da Silva JWP, Krause-Sakate R, Zerbini FM. Assessing the diversity of whiteflies infesting cassava in Brazil. PeerJ 2021; 9:e11741. [PMID: 34316398 PMCID: PMC8286705 DOI: 10.7717/peerj.11741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Background The necessity of a competent vector for transmission is a primary ecological factor driving the host range expansion of plant arthropod-borne viruses, with vectors playing an essential role in disease emergence. Cassava begomoviruses severely constrain cassava production in Africa. Curiously, begomoviruses have never been reported in cassava in South America, the center of origin for this crop. It has been hypothesized that the absence of a competent vector in cassava is the reason why begomoviruses have not emerged in South America. Methods We performed a country-wide whitefly diversity study in cassava in Brazil. Adults and/or nymphs of whiteflies were collected from sixty-six cassava fields in the main agroecological zones of the country. A total of 1,385 individuals were genotyped based on mitochondrial cytochrome oxidase I sequences. Results A high species richness was observed, with five previously described species and two putative new ones. The prevalent species were Tetraleurodes acaciae and Bemisia tuberculata, representing over 75% of the analyzed individuals. Although we detected, for the first time, the presence of Bemisia tabaci Middle East-Asia Minor 1 (BtMEAM1) colonizing cassava in Brazil, it was not prevalent. The species composition varied across regions, with fields in the Northeast region showing a higher diversity. These results expand our knowledge of whitefly diversity in cassava and support the hypothesis that begomovirus epidemics have not occurred in cassava in Brazil due to the absence of competent vector populations. However, they indicate an ongoing adaptation process of BtMEAM1 to cassava, increasing the likelihood of begomovirus emergence in this crop.
Collapse
Affiliation(s)
- Cesar A D Xavier
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | | | | | | | | | - Miguel Alves Júnior
- Faculdade de Engenharia Agronômica, Universidade Federal do Pará, Altamira, PA, Brazil
| | - Leonardo Barbosa
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Renata Calegario
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Eduardo Silva Gorayeb
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Jaime Honorato Júnior
- Centro Multidisciplinar do Campus de Barra, Universidade Federal do Oeste da Bahia, Barra, BA, Brazil
| | - Gabriel Koch
- Dep. de Fitotecnia e Fitossanidade, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | | | - Cristian Lopes
- Instituto Federal do Sudeste de Minas Gerais, Rio Pomba, MG, Brazil
| | | | | | - Fábio Nascimento Silva
- Centro de Ciências Agroveterinárias, Universidade do Estado de Santa Catarina, Lages, SC, Brazil
| | - Roberto Ramos Sobrinho
- Centro de Ciências Agrárias/Fitossanidade, Universidade Federal de Alagoas, Rio Largo, AL, Brazil
| | | | | | | | - Francisco M Zerbini
- Dep. de Fitopatologia/BIOAGRO, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| |
Collapse
|