1
|
Wei ZH, Zhao P, Ning XY, Xie YQ, Li Z, Liu XX. Nanomaterial-Encapsulated dsRNA-Targeting Chitin Pathway─A Potential Efficient and Eco-Friendly Strategy against Cotton Aphid, Aphis gossypii (Hemiptera: Aphididae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:20905-20917. [PMID: 39258562 DOI: 10.1021/acs.jafc.4c06390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The r-strategy pests are very challenging to effectively control because of their rapid population growth and strong resurgence potential and are more prone to developing pesticide resistance. As a typical r-strategy pest, the cosmopolitan cotton aphid, Aphis gossypii Glover, seriously impacts the growth and production of cucurbits and cotton. The present study developed a SPc/double-stranded RNA (dsRNA)/botanical strategy to enhance the control efficacy of A. gossypii. The results demonstrated that the expression of two chitin pathway genes AgCHS2 and AgHK2 notably changed in A. gossypii after treated by three botanical pesticides, 1% azadirachtin, 1% matrine, and 5% eucalyptol. SPc nanocarrier could significantly enhance the environmental stability, cuticle penetration, and interference efficiency of dsRNA products. The SPc/dsRNA/botanical complex could obviously increase the mortality of A. gossypii in both laboratory and greenhouse conditions. This study provides an eco-friendly control technique for enhanced mortality of A. gossypii and lower application of chemical pesticides. Given the conservative feature of chitin pathway genes, this strategy would also shed light on the promotion of management strategies against other r-strategy pests using dsRNA/botanical complex nanopesticides.
Collapse
Affiliation(s)
- Zi-Han Wei
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Peng Zhao
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xin-Yuan Ning
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu-Qing Xie
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiao-Xia Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Pu X, Lin A, Wang C, Jibril SM, Yang X, Yang K, Li C, Wang Y. MoHG1 Regulates Fungal Development and Virulence in Magnaporthe oryzae. J Fungi (Basel) 2024; 10:663. [PMID: 39330422 PMCID: PMC11433375 DOI: 10.3390/jof10090663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 09/28/2024] Open
Abstract
Magnaporthe oryzae causes rice blast disease, which threatens global rice production. The interaction between M. oryzae and rice is regarded as a classic model for studying the relationship between the pathogen and the host. In this study, we found a gene, MoHG1, regulating fungal development and virulence in M. oryzae. The ∆Mohg1 mutants showed more sensitivity to cell wall integrity stressors and their cell wall is more easily degraded by enzymes. Moreover, a decreased content of chitin but higher contents of arabinose, sorbitol, lactose, rhamnose, and xylitol were found in the ∆Mohg1 mutant. Combined with transcriptomic results, many genes in MAPK and sugar metabolism pathways are significantly regulated in the ∆Mohg1 mutant. A hexokinase gene, MGG_00623 was downregulated in ∆Mohg1, according to transcriptome results. We overexpressed MGG_00623 in a ∆Mohg1 mutant. The results showed that fungal growth and chitin contents in MGG_00623-overexpressing strains were restored significantly compared to the ∆Mohg1 mutant. Furthermore, MoHG1 could interact with MGG_00623 directly through the yeast two-hybrid and BiFC. Overall, these results suggest that MoHG1 coordinating with hexokinase regulates fungal development and virulence by affecting chitin contents and cell wall integrity in M. oryzae, which provides a reference for studying the functions of MoHG1-like genes.
Collapse
Affiliation(s)
- Xin Pu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Aijia Lin
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chun Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Sauban Musa Jibril
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Xinyun Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Kexin Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Chengyun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| | - Yi Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Yunnan-CABI Joint Laboratory for Integrated Prevention and Control of Transboundary Pests, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
3
|
Lyu Z, Chen J, Lyu J, Guo P, Liu J, Liu J, Zhang W. Spraying double-stranded RNA targets UDP-N-acetylglucosamine pyrophosphorylase in the control of Nilaparvata lugens. Int J Biol Macromol 2024; 271:132455. [PMID: 38795878 DOI: 10.1016/j.ijbiomac.2024.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/04/2024] [Accepted: 05/14/2024] [Indexed: 05/28/2024]
Abstract
The rice pest Nilaparvata lugens (the brown planthopper, BPH) has developed different levels of resistance to at least 11 chemical pesticides. RNAi technology has contributed to the development of environmentally friendly RNA biopesticides designed to reduce chemical use. Consequently, more precise targets need to be identified and characterized, and efficient dsRNA delivery methods are necessary for effective field pest control. In this study, a low off-target risk dsNlUAP fragment (166 bp) was designed in silico to minimize the potential adverse effects on non-target organisms. Knockdown of NlUAP via microinjection significantly decreased the content of UDP-N-acetylglucosamine and chitin, causing chitinous structural disorder and abnormal phenotypes in wing and body wall, reduced fertility, and resulted in pest mortality up to 100 %. Furthermore, dsNlUAP was loaded with ROPE@C, a chitosan-modified nanomaterial for spray application, which significantly downregulated the expression of NlUAP, led to 48.9 % pest mortality, and was confirmed to have no adverse effects on Cyrtorhinus lividipennis, an important natural enemy of BPH. These findings will contribute to the development of safer biopesticides for the control of N. lugens.
Collapse
Affiliation(s)
- Zihao Lyu
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Guangzhou, China
| | - Jingxiang Chen
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Lyu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Pingping Guo
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jiahui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jinhui Liu
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenqing Zhang
- State Key Laboratory of Biocontrol, School of Agriculture, Sun Yat-sen University, Guangzhou, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
4
|
Wang H, Sun M, Liu N, Yin M, Lin T. Unraveling the Role of Cuticular Protein 3-like (HvCP3L) in the Chitin Pathway through RNAi and Methoxyfenozide Stress Response in Heortia vitessoides Moore. INSECTS 2024; 15:362. [PMID: 38786918 PMCID: PMC11122451 DOI: 10.3390/insects15050362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 04/30/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
Cuticle proteins (CPs) constitute a multifunctional family; however, the physiological role of Cuticle Protein 3-like (CP3L) in Heortia vitessoides Moore remains largely unclear. In this study, we cloned the HvCP3L gene from the transcriptional library of Heortia vitessoides Moore. RT-qPCR results revealed that HvCP3L exhibited high expression levels during the larval stage of Heortia vitessoides Moore, particularly at the L5D1 stage, observed in both larval and adult heads. Through RNA interference, we successfully silenced the HvCP3L gene, resulting in a significant reduction in the survival rate of Heortia vitessoides Moore, with the survival rate from larvae to adults plummeting to a mere 17.7%, accompanied by phenotypic abnormalities. Additionally, we observed that the knockdown of HvCP3L led to the inhibition of genes in the chitin pathway. Following exposure to methoxyfenozide stress, the HvCP3L gene exhibited significant overexpression, coinciding with phenotypic abnormalities. These findings underscore the pivotal role of HvCP3L in the growth and development of Heortia vitessoides Moore.
Collapse
Affiliation(s)
| | | | | | | | - Tong Lin
- College of Forestry and Landscape Architecture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; (H.W.); (M.S.); (N.L.); (M.Y.)
| |
Collapse
|
5
|
Zhang C, Ding Y, Zhou M, Tang Y, Chen R, Chen Y, Wen Y, Wang S. RNAi-mediated CHS-2 silencing affects the synthesis of chitin and the formation of the peritrophic membrane in the midgut of Aedes albopictus larvae. Parasit Vectors 2023; 16:259. [PMID: 37533099 PMCID: PMC10394979 DOI: 10.1186/s13071-023-05865-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/04/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Mosquitoes are an important vector of viral transmission, and due to the complexity of the pathogens they transmit, vector control may be the most effective strategy to control mosquito-borne diseases. Chitin is required for insect growth and development and is absent in higher animals and plants, so regulating the chitin synthesis pathway can serve as a potentially effective means to control vector insects. Most of the current research on the chitin synthase (CHS) gene is focused on chitin synthase-1 (CHS-1), while relatively little is known about chitin synthase-2 (CHS-2). RESULTS The CHS-2 gene of Ae. albopictus is highly conserved and closely related to that of Aedes aegypti. The expression of CHS-2 in the third-instar larvae and pupal stage of Ae. albopictus was relatively high, and CHS-2 expression in adult mosquitoes reached the highest value 24 h after blood-feeding. In the fourth-instar larvae of Ae. albopictus, CHS-2 expression was significantly higher in the midgut than in the epidermis. Silencing CHS-2 in Ae. albopictus larvae had no effect on larval survival and emergence. The expression of four genes related to chitin synthesis enzymes was significantly upregulated, the expression level of three genes was unchanged, and only the expression level of GFAT was significantly downregulated. The expression of chitin metabolism-related genes was also upregulated after silencing. The level of chitin in the midgut of Ae. albopictus larvae was significantly decreased, while the chitinase activity was unchanged. The epithelium of the midgut showed vacuolization, cell invagination and partial cell rupture, and the structure of the peritrophic membrane was destroyed or even absent. METHODS The expression of CHS-2 in different developmental stages and tissues of Aedes albopictus was detected by real-time fluorescence quantitative PCR (qPCR). After silencing CHS-2 of the fourth-instar larvae of Ae. albopictus by RNA interference (RNAi), the expression levels of genes related to chitin metabolism, chitin content and chitinase activity in the larvae were detected. The structure of peritrophic membrane in the midgut of the fourth-instar larvae after silencing was observed by paraffin section and hematoxylin-eosin (HE) staining. CONCLUSION CHS-2 can affect midgut chitin synthesis and breakdown by regulating chitin metabolic pathway-related genes and is involved in the formation of the midgut peritrophic membrane in Ae. albopictus, playing an important role in growth and development. It may be a potential target for enhancing other control methods.
Collapse
Affiliation(s)
- Chen Zhang
- Hangzhou Normal University, Hangzhou, China
| | | | - Min Zhou
- Hangzhou Normal University, Hangzhou, China
| | - Ya Tang
- Hangzhou Normal University, Hangzhou, China
| | - Rufei Chen
- Hangzhou Normal University, Hangzhou, China
| | | | - Yating Wen
- Hangzhou Normal University, Hangzhou, China
| | - Shigui Wang
- Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
6
|
Yang S, Zou Z, Xin T, Cai S, Wang X, Zhang H, Zhong L, Xia B. Knockdown of hexokinase in Diaphorina citri Kuwayama (Hemiptera: Liviidae) by RNAi inhibits chitin synthesis and leads to abnormal phenotypes. PEST MANAGEMENT SCIENCE 2022; 78:4303-4313. [PMID: 35731692 DOI: 10.1002/ps.7049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Silencing specific genes in pests using RNA interference (RNAi) technology is a promising new pest-control strategy. The Asian citrus psyllid, Diaphorina citri Kuwayama, is the most important citrus pest because it transmits Candidatus Liberibacter asiaticus, which causes huanglongbing. Chitin is essential for insect development, and enzymes in this pathway are attractive targets for pest control. RESULTS The hexokinase gene DcHK was characterized from D. citri to impair proper growth and chitin synthesis through RNAi. The transcription of DcHK was more highly developed in third-instar nymphs, adults and the Malpighian tube. The RNAi needed for D. citri is dose-dependent, with 600 ng μl-1 dsDcHK sufficient to knockdown endogenous DcHK expression. The messenger RNA (mRNA) level was lowest at 36 h after dosing, and there were significant effects on the relative levels of mRNA in the chitin synthesis pathway (DcTre, DcG6PI, DcGNAT, DcGFAT, DcPGM, DcUAP and DcCHS), leading to mortality, reduced body weight and abnormal or lethal phenotypes. CONCLUSION RNAi can be triggered by orally delivered double-stranded RNA in D. citri. These results can provide support for HK genes as a new potential target for citrus psyllid control. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan Yang
- School of Life Science, Nanchang University, Nanchang, China
| | - Zhiwen Zou
- School of Life Science, Nanchang University, Nanchang, China
| | - Tianrong Xin
- School of Life Science, Nanchang University, Nanchang, China
| | - Shiyu Cai
- School of Life Science, Nanchang University, Nanchang, China
| | - Xi Wang
- School of Life Science, Nanchang University, Nanchang, China
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Huijie Zhang
- School of Life Science, Nanchang University, Nanchang, China
| | - Ling Zhong
- Administration of Plant Protection and Quarantine of Jiangxi Province, Nanchang, China
| | - Bin Xia
- School of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Tamayo B, Kercher K, Vosburg C, Massimino C, Jernigan MR, Hasan DL, Harper D, Mathew A, Adkins S, Shippy T, Hosmani PS, Flores-Gonzalez M, Panitz N, Mueller LA, Hunter WB, Benoit JB, Brown SJ, D’Elia T, Saha S. Annotation of glycolysis, gluconeogenesis, and trehaloneogenesis pathways provide insight into carbohydrate metabolism in the Asian citrus psyllid. GIGABYTE 2022; 2022:gigabyte41. [PMID: 36824510 PMCID: PMC9933520 DOI: 10.46471/gigabyte.41] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 11/09/2022] Open
Abstract
Citrus greening disease is caused by the pathogen Candidatus Liberibacter asiaticus and transmitted by the Asian citrus psyllid, Diaphorina citri. No curative treatment or significant prevention mechanism exists for this disease, which causes economic losses from reduced citrus production. A high-quality genome of D. citri is being manually annotated to provide accurate gene models to identify novel control targets and increase understanding of this pest. Here, we annotated 25 D. citri genes involved in glycolysis and gluconeogenesis, and seven in trehaloneogenesis. Comparative analysis showed that glycolysis genes in D. citri are highly conserved but copy numbers vary. Analysis of expression levels revealed upregulation of several enzymes in the glycolysis pathway in the thorax, consistent with the primary use of glucose by thoracic flight muscles. Manually annotating these core metabolic pathways provides accurate genomic foundation for developing gene-targeting therapeutics to control D. citri.
Collapse
Affiliation(s)
- Blessy Tamayo
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Kyle Kercher
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Chad Vosburg
- Indian River State College, Fort Pierce, FL 34981, USA
| | | | | | | | | | - Anuja Mathew
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Samuel Adkins
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Teresa Shippy
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | - Wayne B. Hunter
- US Department of Agriculture-Agricultural Research Service (USDA-ARS), US Horticultural Research Laboratory, Fort Pierce, FL 34945, USA
| | - Joshua B. Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Susan J. Brown
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Tom D’Elia
- Indian River State College, Fort Pierce, FL 34981, USA
| | - Surya Saha
- Boyce Thompson InstituteIthaca, NY 14853, USA
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
8
|
Trehalose Ameliorates Diabetic Cardiomyopathy: Role of the PK2/PKR Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2021:6779559. [PMID: 34970418 PMCID: PMC8714337 DOI: 10.1155/2021/6779559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022]
Abstract
Ample clinical case reports suggest a high incidence of cardiomyopathy in diabetes mellitus (DM). Recent evidence supports an essential role of trehalose (TLS) in cardiomyocyte survival signaling. Our previous study found that prokineticin2 (PK2) was involved in the process of diabetic cardiomyopathy (DCM). The present study examined the protective effects and mechanisms of TLS on DM-induced cardiomyocyte injury in mice and H9c2 cardiomyocytes. C57BL/6J mice were intraperitoneally injected with 50 mg·kg−1·d−1 streptozotocin for five consecutive days to establish an experimental diabetic model and then administered TLS (1 mg·g−1·d−1, i.p.) for two days every 4 weeks and given 2% TLS in drinking water for 24 weeks. Echocardiography, myocardial structure, apoptosis, pyroptosis, autophagy, and the PK2/PKR pathway were assessed. Cardiomyocytes exposed to high glucose (HG) were treated with TLS in the absence or presence of the PK2 antagonist PKRA7, and proteins involved in apoptosis, autophagy, and pyroptosis and the PK2/PKR pathways were evaluated using Western blot analysis. Diabetic mice demonstrated metabolic disorder, abnormal myocardial zymograms, and aberrant myocardial systolic and diastolic function, which were accompanied by pronounced apoptosis, pyroptosis, and dampened autophagy. TLS treatment relieved these effects. PK2 and receptor expressions were downregulated in diabetic mice, and TLS nullified this effect. PKRA7 eliminated the impact of TLS on cardiomyocytes. This evidence suggests that TLS rescues DM-induced myocardial function, pyroptosis, and apoptosis, likely via the PK2/PKR pathway.
Collapse
|
9
|
Xu CD, Liu YK, Qiu LY, Wang SS, Pan BY, Li Y, Wang SG, Tang B. GFAT and PFK genes show contrasting regulation of chitin metabolism in Nilaparvata lugens. Sci Rep 2021; 11:5246. [PMID: 33664411 PMCID: PMC7933274 DOI: 10.1038/s41598-021-84760-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/15/2021] [Indexed: 01/10/2023] Open
Abstract
Glutamine:fructose-6-phosphate aminotransferase (GFAT) and phosphofructokinase (PFK) are enzymes related to chitin metabolism. RNA interference (RNAi) technology was used to explore the role of these two enzyme genes in chitin metabolism. In this study, we found that GFAT and PFK were highly expressed in the wing bud of Nilaparvata lugens and were increased significantly during molting. RNAi of GFAT and PFK both caused severe malformation rates and mortality rates in N. lugens. GFAT inhibition also downregulated GFAT, GNPNA, PGM1, PGM2, UAP, CHS1, CHS1a, CHS1b, Cht1-10, and ENGase. PFK inhibition significantly downregulated GFAT; upregulated GNPNA, PGM2, UAP, Cht2-4, Cht6-7 at 48 h and then downregulated them at 72 h; upregulated Cht5, Cht8, Cht10, and ENGase; downregulated Cht9 at 48 h and then upregulated it at 72 h; and upregulated CHS1, CHS1a, and CHS1b. In conclusion, GFAT and PFK regulated chitin degradation and remodeling by regulating the expression of genes related to the chitin metabolism and exert opposite effects on these genes. These results may be beneficial to develop new chitin synthesis inhibitors for pest control.
Collapse
Affiliation(s)
- Cai-Di Xu
- College of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yong-Kang Liu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Ling-Yu Qiu
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Sha-Sha Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bi-Ying Pan
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Yan Li
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Shi-Gui Wang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China
| | - Bin Tang
- Hangzhou Key Laboratory of Animal Adaptation and Evolution, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, People's Republic of China.
| |
Collapse
|
10
|
Ding YJ, Li GY, Xu CD, Wu Y, Zhou ZS, Wang SG, Li C. Regulatory Functions of Nilaparvata lugens GSK-3 in Energy and Chitin Metabolism. Front Physiol 2020; 11:518876. [PMID: 33324230 PMCID: PMC7723894 DOI: 10.3389/fphys.2020.518876] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/20/2020] [Indexed: 12/27/2022] Open
Abstract
Glucose metabolism is a biologically important metabolic process. Glycogen synthase kinase (GSK-3) is a key enzyme located in the middle of the sugar metabolism pathway that can regulate the energy metabolism process in the body through insulin signaling. This paper mainly explores the regulatory effect of glycogen synthase kinase on the metabolism of glycogen and trehalose in the brown planthopper (Nilaparvata lugens) by RNA interference. In this paper, microinjection of the target double-stranded GSK-3 (dsGSK-3) effectively inhibited the expression of target genes in N. lugens. GSK-3 gene silencing can effectively inhibit the expression of target genes (glycogen phosphorylase gene, glycogen synthase gene, trehalose-6-phosphate synthase 1 gene, and trehalose-6-phosphate synthase 2 gene) in N. lugens and trehalase activity, thereby reducing glycogen and glucose content, increasing trehalose content, and regulating insect trehalose balance. GSK-3 can regulate the genes chitin synthase gene and glucose-6-phosphate isomerase gene involved in the chitin biosynthetic pathway of N. lugens. GSK-3 gene silencing can inhibit the synthesis of chitin N. lugens, resulting in abnormal phenotypes and increased mortality. These results indicated that a low expression of GSK-3 in N. lugens can regulate the metabolism of glycogen and trehalose through the insulin signal pathway and energy metabolism pathway, and can regulate the biosynthesis of chitin, which affects molting and wing formation. The relevant research results will help us to more comprehensively explore the molecular mechanism of the regulation of energy and chitin metabolism of insect glycogen synthase kinases in species such as N. lugens.
Collapse
Affiliation(s)
- Yan-Juan Ding
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Guo-Yong Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Cai-Di Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yan Wu
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Zhong-Shi Zhou
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| | - Shi-Gui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Can Li
- Guizhou Provincial Key Laboratory for Rare Animal and Economic Insect of the Mountainous Region, Guizhou Provincial Engineering Research Center for Biological Resources Protection and Efficient Utilization of the Mountainous Region, College of Biology and Environmental Engineering, Guiyang University, Guiyang, China
| |
Collapse
|