1
|
Xu C, Liang L, Liu G, Feng Y, Xu B, Zhu D, Jia W, Wang J, Zhao W, Ling X, Zhou Y, Ding W, Kong L. Predicting hepatocellular carcinoma outcomes and immune therapy response with ATP-dependent chromatin remodeling-related genes, highlighting MORF4L1 as a promising target. Cancer Cell Int 2025; 25:4. [PMID: 39757177 DOI: 10.1186/s12935-024-03629-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/29/2024] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) continues to be a major cause of cancer-related death worldwide, primarily due to delays in diagnosis and resistance to existing treatments. Recent research has identified ATP-dependent chromatin remodeling-related genes (ACRRGs) as promising targets for therapeutic intervention across various types of cancer. This development offers potential new avenues for addressing the challenges in HCC management. METHODS This study integrated bioinformatics analyses and experimental approaches to explore the role of ACRRGs in HCC. We utilized data from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO), applying machine learning algorithms to develop a prognostic model based on ACRRGs' expression. Experimental validation was conducted using quantitative real-time Polymerase Chain Reaction (qRT-PCR), Western blotting, and functional assays in HCC cell lines and xenograft models. RESULTS Our bioinformatics analysis identified four key ACRRGs-MORF4L1, HDAC1, VPS72, and RUVBL2-that serve as prognostic markers for HCC. The developed risk prediction model effectively distinguished between high-risk and low-risk patients, showing significant differences in survival outcomes and predicting responses to immunotherapy in HCC patients. Experimentally, MORF4L1 was demonstrated to enhance cancer stemness by activating the Hedgehog signaling pathway, as supported by both in vitro and in vivo assays. CONCLUSION ACRRGs, particularly MORF4L1, play crucial roles in modulating HCC progression, offering new insights into the molecular mechanisms driving HCC and potential therapeutic targets. Our findings advocate for the inclusion of chromatin remodeling dynamics in the strategic development of precision therapies for HCC.
Collapse
Affiliation(s)
- Chao Xu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Litao Liang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Guoqing Liu
- Children's Hospital of Nanjing Medical University, No. 72, Guangzhou Road, Nanjing, 210008, Jiangsu, China
| | - Yanzhi Feng
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Bin Xu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Deming Zhu
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenbo Jia
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Jinyi Wang
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Wenhu Zhao
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Xiangyu Ling
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China
| | - Yongping Zhou
- Department of Hepatobiliary Surgery, Wuxi No.2 People's Hospital, No. 68 Zhongshan Road, Wuxi, China.
| | - Wenzhou Ding
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| | - Lianbao Kong
- Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Hepatobiliary Cancers, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Nadhan R, Isidoro C, Song YS, Dhanasekaran DN. LncRNAs and the cancer epigenome: Mechanisms and therapeutic potential. Cancer Lett 2024; 605:217297. [PMID: 39424260 DOI: 10.1016/j.canlet.2024.217297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of epigenome, modulating gene expression through DNA methylation, histone modification, and/or chromosome remodeling. Dysregulated lncRNAs act as oncogenes or tumor suppressors, driving tumor progression by shaping the cancer epigenome. By interacting with the writers, readers, and erasers of the epigenetic script, lncRNAs induce epigenetic modifications that bring about changes in cancer cell proliferation, apoptosis, epithelial-mesenchymal transition, migration, invasion, metastasis, cancer stemness and chemoresistance. This review analyzes and discusses the multifaceted role of lncRNAs in cancer pathobiology, from cancer genesis and progression through metastasis and therapy resistance. It also explores the therapeutic potential of targeting lncRNAs through innovative diagnostic, prognostic, and therapeutic strategies. Understanding the dynamic interplay between lncRNAs and epigenome is crucial for developing personalized therapeutic strategies, offering new avenues for precision cancer medicine.
Collapse
Affiliation(s)
- Revathy Nadhan
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Ciro Isidoro
- Laboratory of Molecular Pathology and NanoBioImaging, Department of Health Sciences, Università del Piemonte Orientale, Novara, Italy.
| | - Yong Sang Song
- Department of Obstetrics and Gynecology, Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 151-921, South Korea.
| | - Danny N Dhanasekaran
- Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Cell Biology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
3
|
Coconubo DM, Wangsiricharoen S, Pettus JR, Linos K, Pinto A, Wang WL, Kerr DA, Cloutier JM. A Subset of Thoracic SMARCA4-Deficient Undifferentiated Tumors Express GATA3. Int J Surg Pathol 2024; 32:684-691. [PMID: 37461275 DOI: 10.1177/10668969231188904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a rare and highly aggressive malignant neoplasm characterized by high-grade undifferentiated morphologic features and recurrent inactivating mutations of SMARCA4. These tumors consistently exhibit loss of SMARCA4 (BRG1) while displaying variable expression of other nonspecific markers. Recently, we encountered a SMARCA4-UT demonstrating immunoreactivity for GATA3, and we sought to characterize this phenomenon in a larger series. A total of nine SMARCA4-UTs were examined from 3 large academic institutions. The clinicopathologic and molecular characteristics were studied and GATA3 immunohistochemistry was performed. The cohort included 5 male and 4 female patients, with a median age of 54 years and a median smoking history of 37 pack-years. At initial diagnosis, mediastinal lymph node involvement was observed in 5 patients (56%) while distant metastases were present in 7 patients (78%). The median survival was 6 months. Histologically, the tumors were characterized by sheets of undifferentiated epithelioid and/or rhabdoid cells, accompanied by frequent mitotic figures and necrosis. Immunohistochemically, all tumors displayed a complete loss of BRG1 expression. Notably, 4 of 9 tumors (44%) were positive for GATA3 expression, including one tumor that exhibited strong and diffuse immunoreactivity. GATA3 expression in SMARCA4-UT may pose diagnostic challenges, requiring differentiation from other GATA3-positive tumors. This distinction is crucial for accurate prognostication and treatment decisions.
Collapse
Affiliation(s)
- Daniel Martinez Coconubo
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Jason R Pettus
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Andre Pinto
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Wei-Lien Wang
- Department of Pathology, The University of Texas at MD Anderson Cancer Center, Houston, TX, USA
| | - Darcy A Kerr
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Jeffrey M Cloutier
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, One Medical Center Drive, Lebanon, NH, USA
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
4
|
Zhou P, Fu Y, Tang Y, Jiang L, Wang W. Thoracic SMARCA4-deficient undifferentiated tumor: A clinicopathological and prognostic analysis of 35 cases and immunotherapy efficacy. Lung Cancer 2024; 189:107471. [PMID: 38306886 DOI: 10.1016/j.lungcan.2024.107471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/04/2024]
Abstract
BACKGROUND Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a recently recognized distinct clinicopathological entity according to the fifth edition of the 2021 World Health Organization Classification (WHO) for thoracic tumors. Thoracic SMARCA4-UTs are diagnostically challenging to diagnose, especially on small biopsies. METHODS We identified 35 thoracic SMARCA4-UTs from the Department of Pathology of West China Hospital, Sichuan University, between January 2017 and December 2022. In the present study, we summarized the clinicopathological features, prognostic significance and immunotherapy efficacy of thoracic SMARCA4-UTs. RESULTS All 35 patients were male, and 88.6 % were smokers. The left upper lobe (25.7 %) and mediastinum (20.0 %) were the most affected sites. 17.1 % of the patients received surgical treatment. 30.4 % of the patients were stage III, and 69.6 % were stage IV. Solid architecture (100 %), rhabdoid morphology (51.4 %) and necrosis (42.9 %) were the common histological features. Immunohistochemical staining revealed CD34 and synaptophysin positivity in most patients (76.9 % and 65.2 %, respectively). Patients had unfavorable outcomes. Patients who received immunotherapy had better OS and PFS than those who did not (p = 0.007 and p = 0.02, respectively). Five patients were evaluated for immunotherapy efficacy, and four of those patients were negative expression of PD-L1. Cases 1-4 presented TIL counts ranging from 20 to 1000/HPF. Case 5 presented TIL counts of 5-10/HPF. Mutations in SMARCA4 were confirmed in cases 4 and 5, and the TMB was 5.98 and 5.03 mutations/Mb, respectively. Case 1 achieved a CR, cases 2-4 achieved a PR, and case 5 had a PD. Five patients who received immunotherapy were all alive, with OS ranging from 10.7 to 33.6 months. CONCLUSIONS Thoracic SMARCA4-UTs exhibited an aggressive clinical course, presented solid architecture with or without necrosis and/or rhabdoid morphology, and frequently expressed CD34 and synaptophysin. Some thoracic SMARCA4-UTs appear to be associated with responsiveness to immunotherapy, suggesting the need for validation in larger series.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Zhou P, Fu Y, Tang Y, Jiang L, Wang W. Thoracic SMARCA4-deficient tumors: a clinicopathological analysis of 52 cases with SMARCA4-deficient non-small cell lung cancer and 20 cases with thoracic SMARCA4-deficient undifferentiated tumor. PeerJ 2024; 12:e16923. [PMID: 38374950 PMCID: PMC10875988 DOI: 10.7717/peerj.16923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 01/19/2024] [Indexed: 02/21/2024] Open
Abstract
Background Thoracic SMARCA4-deficient undifferentiated tumor (SMARCA4-UT) is a distinct clinicopathological entity with an aggressive clinical course. Additionally, SMARCA4/BRG1 deficiency can be observed in a few patients with non-small cell lung cancer (NSCLC). We aimed to compare the clinicopathological, immunohistochemical and prognostic features of SMARCA4-deficient NSCLC (SMARCA4-dNSCLC) with those of thoracic SMARCA4-UT. Methods Patients with BRG1-deficient tumors in the lung or thorax were enrolled in the study from the Department of Pathology of West China Hospital, Sichuan University, from January 2014 to June 2022. We retrospectively collected the clinicopathological and immunohistochemical features and outcomes of these patients. Results Seventy-two patients had tumors in the lung or thorax with BRG1-deficient expression, including 52 patients with SMARCA4-dNSCLC and 20 patients with thoracic SMARCA4-UT. Among the patients with SMARCA4-dNSCLC, 98.1% were male, 85.7% were smokers, and 79.5% (35/44) had tumor-node-metas-tasis (TNM) III-IV tumors. Among the patients with thoracic SMARCA4-UT, all were males who smoked, and 93.75% (15/16) had TNM III-IV tumors. Pure solid architecture and necrosis were the predominant pathological features. Rhabdoid morphology was observed in some SMARCA4-dNSCLCs (10/52, 19.2%) and thoracic SMARCA4-UTs (11/20, 55%). In most patients with thoracic SMARCA4-UT, the tumors exhibited scattered weak expression or negative expression of epithelial markers, and positive expression of CD34 and Syn. Overall survival (OS) and progression-free survival (PFS) were not significantly different between patients with SMARCA4-dNSCLC and patients with thoracic SMARCA4-UT (p = 0.63 and p = 0.20, respectively). Conclusions Thoracic SMARCA4-DTs include SMARCA4-dNSCLC and thoracic SMARCA4-UT. Both have overlapping clinicopathological features and poor prognosis. We hypothesize that thoracic SMARCA4-UT may be the undifferentiated or dedifferentiated form of SMARCA4-dNSCLC. However, further studies with larger cohorts and longer follow-up periods are needed.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yiyun Fu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Tang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lili Jiang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weiya Wang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
7
|
Lu S, Duan R, Cong L, Song Y. The effects of ARID1A mutation in gastric cancer and its significance for treatment. Cancer Cell Int 2023; 23:296. [PMID: 38008753 PMCID: PMC10676575 DOI: 10.1186/s12935-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gastric cancer (GC) has emerged as a significant issue in public health all worldwide as a result of its high mortality rate and dismal prognosis. AT-rich interactive domain 1 A (ARID1A) is a vital component of the switch/sucrose-non-fermentable (SWI/SNF) chromatin remodeling complex, and ARID1A mutations occur in various tumors, leading to protein loss and decreased expression; it then affects the tumor biological behavior or prognosis. More significantly, ARID1A mutations will likely be biological markers for immune checkpoint blockade (ICB) treatment and selective targeted therapy. To provide theoretical support for future research on the stratification of individuals with gastric cancer with ARID1A as a biomarker to achieve precision therapy, we have focused on the clinical significance, predictive value, underlying mechanisms, and possible treatment strategies for ARID1A mutations in gastric cancer in this review.
Collapse
Affiliation(s)
- Shan Lu
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ruifeng Duan
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
8
|
Navickas SM, Giles KA, Brettingham-Moore KH, Taberlay PC. The role of chromatin remodeler SMARCA4/BRG1 in brain cancers: a potential therapeutic target. Oncogene 2023:10.1038/s41388-023-02773-9. [PMID: 37433987 PMCID: PMC10374441 DOI: 10.1038/s41388-023-02773-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/16/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
The chromatin remodeler SMARCA4/BRG1 is a key epigenetic regulator with diverse roles in coordinating the molecular programs that underlie brain tumour development. BRG1 function in brain cancer is largely specific to the tumour type and varies further between tumour subtypes, highlighting its complexity. Altered SMARCA4 expression has been linked to medulloblastoma, low-grade gliomas such as oligodendroglioma, high-grade gliomas such as glioblastoma and atypical/teratoid rhabdoid tumours. SMARCA4 mutations in brain cancer predominantly occur in the crucial catalytic ATPase domain, which is associated with tumour suppressor activity. However, SMARCA4 is opposingly seen to promote tumourigenesis in the absence of mutation and through overexpression in other brain tumours. This review explores the multifaceted interaction between SMARCA4 and various brain cancer types, highlighting its roles in tumour pathogenesis, the pathways it regulates, and the advances that have been made in understanding the functional relevance of mutations. We discuss developments made in targeting SMARCA4 and the potential to translate these to adjuvant therapies able to enhance current methods of brain cancer treatment.
Collapse
Affiliation(s)
- Sophie M Navickas
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Katherine A Giles
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
- Children's Medical Research Institute, 214 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kate H Brettingham-Moore
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, 17 Liverpool Street, Hobart, TAS, 7000, Australia.
| |
Collapse
|
9
|
Villacreses CA, Herson AB, Boshkos MC, Beetz B, Elkins I, Klink JC. Giant Renal Cell Carcinoma (RCC): A Case Report of Delayed Diagnosis and Management. Cureus 2023; 15:e42324. [PMID: 37614267 PMCID: PMC10443602 DOI: 10.7759/cureus.42324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/23/2023] [Indexed: 08/25/2023] Open
Abstract
Renal cell carcinoma (RCC) is the most common type of kidney cancer. It typically presents with macroscopic hematuria, weight loss, and or a palpable flank mass. Diagnosis of this disease involves imaging techniques such as abdominal ultrasound and CT scans. Care for RCC can consist of ablation, tumor removal, nephrectomy, and systemic treatment options. Herein, we present a case of a 50-year-old Hispanic male with complaints of rectal bleeding and hematuria. Prior to admission, the patient had been informed twice about high suspicion of renal malignancy. Due to low health literacy and barriers to communication, he failed to understand the magnitude of his diagnosis. Subsequently, he underwent a resection of a considerable 22 cm x 13 cm x 13 cm RCC of his left kidney. This case highlights the need for effective patient health education to prevent emotional distress in patients with low health literacy.
Collapse
Affiliation(s)
| | - Andrew B Herson
- Urology, Lake Erie College of Osteopathic Medicine, Jacksonville, USA
| | | | - Bailey Beetz
- Urology, Lake Erie College of Osteopathic Medicine, Bradenton, USA
| | - Isaac Elkins
- Urology, Lake Erie College of Osteopathic Medicine, Jacksonville, USA
| | | |
Collapse
|
10
|
Agaimy A. SWI/SNF-deficient Malignancies: Optimal Candidates for Immune-oncological Therapy? Adv Anat Pathol 2023; 30:211-217. [PMID: 36069856 DOI: 10.1097/pap.0000000000000366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of different subunits of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex has emerged as one of the most frequent genetic pathways driving a variety of neoplasms of diverse histogenesis, originating in different organs. With few exceptions, most SWI/SNF-deficient malignancies pursue a highly aggressive clinical course resulting in widespread disease dissemination either at or soon after diagnosis, ultimately causing patients' death soon after diagnosis, despite the apparently curative treatment intention. To date, no satisfactorily effective systemic chemotherapy has been established for treating these diseases. This disappointing finding underlines the urgent need for an effective systemic therapy that would enable sufficient intermediate to long-term disease control. Recently, SWI/SNF-deficiency has increasingly emerged as pivotal in cancer immunogenicity and hence a promising biomarker predicting response to immune-checkpoint inhibition therapy utilizing several recently established drugs. This review summarizes the most recent literature on this topic with emphasis on the entities that most likely represent suitable candidates for immune therapy.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
11
|
SMARCA4: Current status and future perspectives in non-small-cell lung cancer. Cancer Lett 2023; 554:216022. [PMID: 36450331 DOI: 10.1016/j.canlet.2022.216022] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022]
Abstract
SMARCA4, also known as transcription activator, is an ATP-dependent catalytic subunit of SWI/SNF (SWItch/Sucrose NonFermentable) chromatin-remodeling complexes that participates in the regulation of chromatin structure and gene expression by supplying energy. As a tumor suppressor that has aberrant expression in ∼10% of non-small-cell lung cancers (NSCLCs), SMARCA4 possesses many biological functions, including regulating gene expression, differentiation and transcription. Furthermore, NSCLC patients with SMARCA4 alterations have a weak response to conventional chemotherapy and poor prognosis. Therefore, the mechanisms of SMARCA4 in NSCLC development urgently need to be explored to identify novel biomarkers and precise therapeutic strategies for this subtype. This review systematically describes the biological functions of SMARCA4 and its role in NSCLC development, metastasis, functional epigenetics and potential therapeutic approaches for NSCLCs with SMARCA4 alterations. Additionally, this paper explores the relationship and regulatory mechanisms shared by SMARCA4 and its mutually exclusive catalytic subunit SMARCA2. We aim to provide innovative treatment strategies and improve clinical outcomes for NSCLC patients with SMARCA4 alterations.
Collapse
|
12
|
Kalantari S, Kazemi B, Roudi R, Zali H, D'Angelo A, Mohamadkhani A, Madjd Z, Pourshams A. RNA-sequencing for transcriptional profiling of whole blood in early stage and metastatic pancreatic cancer patients. Cell Biol Int 2022; 47:238-249. [PMID: 36229929 DOI: 10.1002/cbin.11924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022]
Abstract
We investigated the transcriptional profile of whole blood in early and metastatic stages of pancreatic cancer (PaC) patients to identify potential diagnostic factors for early diagnosis. Blood samples from 18 participants (6 healthy individuals, 6 patients in early stage (I/II) PaC, and 6 patients in metastatic PaC) were analyzed by RNA-sequencing. The expression levels of identified genes were subsequently compared with their expression in pancreatic tumor tissues based on TCGA data reported in UALCAN and GEPIA2 databases. Overall, 331 and 724 genes were identified as differentially expressed genes in early and metastatic stages, respectively. Of these, 146 genes were shared by early and metastatic stages. Upregulation of PTCD3 and UBA52 genes and downregulation of A2M and ARID1B genes in PaC patients were observed from early stage to metastasis. TCGA database showed increasing trend in expression levels of these genes from stage I to IV in pancreatic tumor tissue. Finally, we found that low expression of PTCD3, A2M, and ARID1B genes and high expression of UBA52 gene were positively correlated with PaC patients survival. We identified a four-gene set (PTCD3, UBA52, A2M, and ARID1B) expressed in peripheral blood of early stage and metastatic PaC patients that may be useful for PaC early diagnosis.
Collapse
Affiliation(s)
- Sima Kalantari
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Hakimeh Zali
- Proteomics Research Center, Shahid Beheshti University of Medical Science, Tehran, Iran.,Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Pourshams
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Digestive Oncology Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Sahoo OS, Pethusamy K, Srivastava TP, Talukdar J, Alqahtani MS, Abbas M, Dhar R, Karmakar S. The metabolic addiction of cancer stem cells. Front Oncol 2022; 12:955892. [PMID: 35957877 PMCID: PMC9357939 DOI: 10.3389/fonc.2022.955892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 11/13/2022] Open
Abstract
Cancer stem cells (CSC) are the minor population of cancer originating cells that have the capacity of self-renewal, differentiation, and tumorigenicity (when transplanted into an immunocompromised animal). These low-copy number cell populations are believed to be resistant to conventional chemo and radiotherapy. It was reported that metabolic adaptation of these elusive cell populations is to a large extent responsible for their survival and distant metastasis. Warburg effect is a hallmark of most cancer in which the cancer cells prefer to metabolize glucose anaerobically, even under normoxic conditions. Warburg's aerobic glycolysis produces ATP efficiently promoting cell proliferation by reprogramming metabolism to increase glucose uptake and stimulating lactate production. This metabolic adaptation also seems to contribute to chemoresistance and immune evasion, a prerequisite for cancer cell survival and proliferation. Though we know a lot about metabolic fine-tuning in cancer, what is still in shadow is the identity of upstream regulators that orchestrates this process. Epigenetic modification of key metabolic enzymes seems to play a decisive role in this. By altering the metabolic flux, cancer cells polarize the biochemical reactions to selectively generate "onco-metabolites" that provide an added advantage for cell proliferation and survival. In this review, we explored the metabolic-epigenetic circuity in relation to cancer growth and proliferation and establish the fact how cancer cells may be addicted to specific metabolic pathways to meet their needs. Interestingly, even the immune system is re-calibrated to adapt to this altered scenario. Knowing the details is crucial for selective targeting of cancer stem cells by choking the rate-limiting stems and crucial branch points, preventing the formation of onco-metabolites.
Collapse
Affiliation(s)
- Om Saswat Sahoo
- Department of Biotechnology, National Institute of technology, Durgapur, India
| | - Karthikeyan Pethusamy
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | | | - Joyeeta Talukdar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, Saudi Arabia
- Computers and communications Department, College of Engineering, Delta University for Science and Technology, Gamasa, Egypt
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
14
|
Thakur S, Cahais V, Turkova T, Zikmund T, Renard C, Stopka T, Korenjak M, Zavadil J. Chromatin Remodeler Smarca5 Is Required for Cancer-Related Processes of Primary Cell Fitness and Immortalization. Cells 2022; 11:808. [PMID: 35269430 PMCID: PMC8909548 DOI: 10.3390/cells11050808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/04/2022] Open
Abstract
Smarca5, an ATPase of the ISWI class of chromatin remodelers, is a key regulator of chromatin structure, cell cycle and DNA repair. Smarca5 is deregulated in leukemia and breast, lung and gastric cancers. However, its role in oncogenesis is not well understood. Chromatin remodelers often play dosage-dependent roles in cancer. We therefore investigated the epigenomic and phenotypic impact of controlled stepwise attenuation of Smarca5 function in the context of primary cell transformation, a process relevant to tumor formation. Upon conditional single- or double-allele Smarca5 deletion, the cells underwent both accelerated growth arrest and senescence entry and displayed gradually increased sensitivity to genotoxic insults. These phenotypic characteristics were explained by specific remodeling of the chromatin structure and the transcriptome in primary cells prior to the immortalization onset. These molecular programs implicated Smarca5 requirement in DNA damage repair, telomere maintenance, cell cycle progression and in restricting apoptosis and cellular senescence. Consistent with the molecular programs, we demonstrate for the first time that Smarca5-deficient primary cells exhibit dramatically decreased capacity to bypass senescence and immortalize, an indispensable step during cell transformation and cancer development. Thus, Smarca5 plays a crucial role in key homeostatic processes and sustains cancer-promoting molecular programs and cellular phenotypes.
Collapse
Affiliation(s)
- Shefali Thakur
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
- Faculty of Science, Charles University, 128 43 Prague, Czech Republic; (S.T.)
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tereza Turkova
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Tomas Zikmund
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
- Institute of Epigenetics and Stem Cells (IES), Helmholtz Zentrum, D-81377 München, Germany; (T.Z.)
| | - Claire Renard
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Tomáš Stopka
- Biocev, First Faculty of Medicine, Charles University, 252 50 Vestec, Czech Republic; (T.T.); (T.Z.); (T.S.)
| | - Michael Korenjak
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| | - Jiri Zavadil
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer, World Health Organization, 69008 Lyon, France; (S.T.); (V.C.); (C.R.)
| |
Collapse
|
15
|
Duan Z, Yao K, Yang S, Qu Y, Ren M, Zhang Y, Fan T, Zhao H, Gao J, Feng J, Fan X, Qi X. Primary adult sellar SMARCB1/INI1-deficient tumor represents a subtype of atypical teratoid/rhabdoid tumor. Mod Pathol 2022; 35:1910-1920. [PMID: 35804041 PMCID: PMC9708584 DOI: 10.1038/s41379-022-01127-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/01/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
Loss of function in SMARCB1/INI1 has been observed in a group of malignancies collectively defined as SMARCB1/INI1-deficient neoplasms. Primary intracranial SMARCB1/INI1-deficient tumors in adults are extremely rare. We collected eight primary adult sellar SMARCB1/INI1-deficient tumors to study their clinicopathological and (epi)genetic characteristics. We performed a comprehensive assessment of the clinical, radiological, morphological and immunohistochemical features. FISH analysis for the SMARCB1 locus and target exome sequencing for 425 cancer relevant genes were performed. Furthermore, six bona fide proximal epithelioid sarcoma (PES), fourteen atypical teratoid/rhabdoid tumors (ATRT) in brain and five pediatric poorly differentiated chordomas (PDC) in the clivus were collected for comparative analysis of differential diagnostic maker expression and DNA methylation profile. The median age was 47.1 years, ranging from 26 to 73 years. On morphology, tumors were characterized by sheets of monomorphic larger epithelioid-like cells, in two cases with rhabdoid cells. "Stag-horn" vasculatures were observed in five cases. The loss of INI1 protein expression, co-expression of epithelial makers and mesenchymal markers were observed in all cases. CD34 expression was observed in six cases. Heterozygous deletion of SMARCB1/INI1 was confirmed using FISH in six cases. The results of target exome sequencing showed three patients harbored heterozygous point mutations in SMARCB1. The epigenetic features of the primary adult sellar SMARCB1/INI1-deficient tumors resembled the ATRT-MYC subgroup, but clustered apart from PES and PDC. Based on epigenetic characteristics, primary adult sellar SMARCB1/INI1-deficient tumors represent a subtype of ATRT with similar epigenetic characteristics of ATRT-MYC subgroup. Our findings suggest that DNA methylation profiling should be utilized for differential diagnosis for the majority of epithelioid sarcoma and (sellar) rhabdoid tumor.
Collapse
Affiliation(s)
- Zejun Duan
- grid.24696.3f0000 0004 0369 153XDepartment of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Kun Yao
- grid.24696.3f0000 0004 0369 153XDepartment of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Shaomin Yang
- grid.11135.370000 0001 2256 9319Department of Pathology, School of Basic Medical Sciences, Third Hospital, Peking University Health Science Center, Beijing, 100191 China
| | - Yanming Qu
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Ming Ren
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Yongli Zhang
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Tao Fan
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Heqian Zhao
- grid.24696.3f0000 0004 0369 153XDepartment of Neurosurgery, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Jie Gao
- grid.24696.3f0000 0004 0369 153XDepartment of Radiology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093 China
| | - Jing Feng
- grid.20513.350000 0004 1789 9964Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, School of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Xiaolong Fan
- grid.20513.350000 0004 1789 9964Beijing Key Laboratory of Gene Resource and Molecular Development, Laboratory of Neuroscience and Brain Development, School of Life Sciences, Beijing Normal University, Beijing, 100875 China
| | - Xueling Qi
- Department of Pathology, Sanbo Brain Hospital, Capital Medical University, Beijing, 100093, China.
| |
Collapse
|
16
|
Mardinian K, Adashek JJ, Botta GP, Kato S, Kurzrock R. SMARCA4: Implications of an Altered Chromatin-Remodeling Gene for Cancer Development and Therapy. Mol Cancer Ther 2021; 20:2341-2351. [PMID: 34642211 PMCID: PMC8643328 DOI: 10.1158/1535-7163.mct-21-0433] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 10/07/2021] [Indexed: 01/04/2023]
Abstract
The SWI/SNF chromatin remodeling complex, via nucleosome topology modulation, regulates transcription. The SMARCA4 (BRG1) subunit codes for the ATPase energy engine of the SWI/SNF complex. SMARCA4 is a tumor suppressor that is aberrant in ∼5% to 7% of human malignancies. Class I SMARCA4 alterations (truncating mutations, fusions, and homozygous deletion) lead to loss of function whereas class II alterations (missense mutations) have a dominant negative/gain-of-function effect and/or loss-of function. SMARCA4 alterations typify the ultra-rare small cell carcinomas of the ovary hypercalcemic type (SCCOHT) and SMARCA4-deficient thoracic and uterine sarcomas; they are also found in a subset of more common tumors, for example, lung, colon, bladder, and breast carcinomas. Germline variants in the SMARCA4 gene lead to various hereditary conditions: rhabdoid tumor predisposition syndrome-2 (RTPS2), characterized by loss-of-function alterations and aggressive rhabdoid tumors presenting in infants and young children; and Coffin-Siris syndrome, characterized by dominant negative/gain-of function alterations and developmental delays, microcephaly, unique facies, and hypoplastic nails of the fifth fingers or toes. A minority of rhabdoid tumors have a germline SMARCA4 variant as do >40% of women with SCCOHT. Importantly, immune checkpoint blockade has shown remarkable, albeit anecdotal, responses in SCCOHT. In addition, there is ongoing research into BET, EZH2, HDAC, CDK4/6, and FGFR inhibitors, as well as agents that might induce synthetic lethality via DNA damage repair impairment (ATR inhibitors and platinum chemotherapy), or via the exploitation of mitochondrial oxidative phosphorylation inhibitors or AURKA inhibitors, in SMARCA4-aberrant cancers.
Collapse
Affiliation(s)
- Kristina Mardinian
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Jacob J Adashek
- Department of Internal Medicine, University of South Florida, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.
| | - Gregory P Botta
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Shumei Kato
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California
| | - Razelle Kurzrock
- Center for Personalized Cancer Therapy, University of California San Diego, Moores Cancer Center, La Jolla, California. .,WIN Consortium, Paris, France
| |
Collapse
|
17
|
Mao R, Liu M, Shu X, Li W, Yan W, Li X. Expanding the Immunophenotype Spectrum of SMARCA4-Deficient Non-Small Cell Lung Carcinomas: A Case Series with Neuroendocrine Markers Expression. Int J Surg Pathol 2021; 30:251-259. [PMID: 34633874 DOI: 10.1177/10668969211047982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aims. In recent years, SMARCA4-deficient nonsmall cell lung cancer (NSCLC) has been recognized as a distinct new subtype of lung cancer, which is characterized by loss of SMARCA4 (Brahma-related gene-1 [BRG1]) protein expression. Only a limited number of SMARCA4-deficient NSCLC case series have been reported, and their clinicopathological features have not yet been fully elucidated. Our main aim was to analyze the clinical history, histology, immunohistochemistry, and molecular pathology of 5 SMARCA4-deficient NSCLC patients with poorly differentiated or undifferentiated histology and neuroendocrine markers expression. Methods and results. Five patients with complete loss of nuclear BRG1 immunostaining were identified among 53 patients of poorly differentiated/undifferentiated NSCLC. We then performed immunohistochemical staining and gene mutation analysis using a real-time polymerase chain reaction. All patients were male aged between 58 and 82 years (average 67.6 years), with smoking exposure. Histologically, the tumors had a relatively monotonous morphology and showed solid nest-like, sheet-like growth, and geographic necrosis. Thyroid transcription factor 1, cytokeratin 7, and Napsin A were all negative (5 of 5). Moreover, all tumors showed a variable expression of neuroendocrine markers, including synaptophysin, chromogranin A and CD56. Hot spot epidermal growth factor receptor/anaplastic large-cell lymphoma kinase/c-ros oncogene 1 mutations were not detected in any of the 5 tumors. Conclusions. To the best of our knowledge, this is the first study that has reported the poorly differentiated morphology with a frequent expression of neuroendocrine markers. Our results have expanded the immunophenotype spectrum of SMARCA4-deficient NSCLC. However, the clinicopathological significance of this subset of SMARCA4-deficient NSCLC should be further clarified in larger series studies.
Collapse
Affiliation(s)
- Ruiqi Mao
- Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| | - Min Liu
- Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| | - Xiangfang Shu
- Boxing People's Hospital, Boxing, Shandong Province, PR China
| | - Wenli Li
- Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| | - Wei Yan
- Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| | - Xinjun Li
- Binzhou People's Hospital, Binzhou, Shandong Province, PR China
| |
Collapse
|
18
|
Agaimy A, Hartmann A. [SMARCB1(INI1)-deficient renal cell carcinoma: medullary and beyond : Evolving concepts]. DER PATHOLOGE 2021; 42:571-577. [PMID: 34609565 DOI: 10.1007/s00292-021-00985-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 10/20/2022]
Abstract
During the last decades, the SWI/SNF chromatin-remodeling complex has received enormous recognition as a major player in the molecular pathogenesis of diverse neoplasms. Accordingly, SWI/SNF defects affecting different subunits of the complex became defining genetic features in the nosology of different neoplastic entities. In the kidney, loss of SMARCB1(INI1) as a major component of the SWI/SNF complex has emerged as the defining genetic marker for renal medullary carcinoma and pediatric malignant rhabdoid tumor. Diagnosis of these two rare entities is based on a set of defined demographic, clinicopathological, immunophenotypic, and genetic (SMARCB1 loss) criteria. Moreover, the sickle cell trait is considered a prerequisite for renal medullary carcinoma. Current knowledge illustrates that SMARCB1 loss is encountered in three major tumor categories in the kidney: (1) histologically defined neoplasms that are primarily driven by de novo SMARCB1 loss (renal medullary carcinoma and malignant rhabdoid tumor); (2) SMRACB1-deficient renal cell carcinoma (RCC) with variable non-specific histology ranging from collecting duct-like, papillary high-grade (papillary type 2), or medullary-like (lacking sickle cell trait), to fully undifferentiated; and (3) biphasic (dedifferentiated) RCC showing a variable SMARCB1-deficient undifferentiated component. The latter variant most frequently originates from pre-existing clear cell RCC but may rarely superimpose on papillary or chromophobe RCC. This review summarizes the major defining features of the emerging SMARCB1-deficient renal neoplasms. All SMARCB1-deficient carcinomas have a poor prognosis in common. Therefore, exact diagnosis of these tumors is a prerequisite for studies investigating new therapies.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 8-10, 91054, Erlangen, Deutschland.
| | - Arndt Hartmann
- Institut für Pathologie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Krankenhausstraße 8-10, 91054, Erlangen, Deutschland
| |
Collapse
|
19
|
Mehta A, Bansal D, Tripathi R, Jajodia A. SMARCA4/BRG1 protein-deficient thoracic tumors dictate re-examination of small biopsy reporting in non-small cell lung cancer. J Pathol Transl Med 2021; 55:307-316. [PMID: 34147056 PMCID: PMC8476316 DOI: 10.4132/jptm.2021.05.11] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 05/10/2021] [Indexed: 12/23/2022] Open
Abstract
Background SMARCA4/BRG1 protein–deficient lung adenocarcinomas and thoracic sarcoma are recently described entities that lack distinctive histological features, transcription termination factor 1 (TTF1) reactivity, and actionable driver mutations. The current diagnostic path for small lung biopsies as recommended by the World Health Organization (WHO, 2015) is likely to categorize these as non–small cell carcinoma–not otherwise specified (NSCC-NOS). The present study attempts to define the subtle but distinctive clinicopathologic features of SMARCA4/BRG1 protein-deficient thoracic tumors; highlight their unique biology; and addresses the unmet need to segregate these using a new, tissue-proficient diagnostic pathway. Methods All lung biopsies and those from metastatic sites in patients with suspected advanced lung cancer and classified as NSCC-NOS as per WHO (2015) guidelines were subjected to BRG1 testing by immunohistochemistry. SMARCA4/BRG1 protein–deficient thoracic tumors were evaluated by an extended immunohistochemistry panel. Predictive biomarker and programmed death–ligand 1 testing was conducted in all cases. Results Of 110 cases, nine were found to be SMARCA4/BRG1 protein-deficient; six were identified as SMARCA4/BRG1 protein–deficient lung adenocarcinomas, and three were SMARCA4/BRG1 protein-deficient thoracic sarcomas. The histology ranged from poorly differentiated to undifferentiated to rhabdoid. None of the cases showed significant expression of TTF1 or p40, and no actionable mutation was identified. Conclusions It is difficult to separate BRG1-deficient lung adenocarcinomas and thoracic sarcomas based on morphology alone. We propose a diagnostic pathway for small biopsies of thoracic tumors to segregate these distinct entities so that they can be studied more efficaciously for new biomarkers and therapeutic options.
Collapse
Affiliation(s)
- Anurag Mehta
- Department of Laboratory, Molecular and Transfusion Services, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Divya Bansal
- Department of Pathology, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Rupal Tripathi
- Department of Research, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| | - Ankush Jajodia
- Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre (RGCIRC), New Delhi, India
| |
Collapse
|
20
|
French R, Pauklin S. Epigenetic regulation of cancer stem cell formation and maintenance. Int J Cancer 2021; 148:2884-2897. [PMID: 33197277 PMCID: PMC8246550 DOI: 10.1002/ijc.33398] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/23/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022]
Abstract
Cancerous tumours contain a rare subset of cells with stem-like properties that are termed cancer stem cells (CSCs). CSCs are defined by their ability to divide both symmetrically and asymmetrically, to initiate new tumour growth and to tolerate the foreign niches required for metastatic dissemination. Accumulating evidence suggests that tumours arise from cells with stem-like properties, the generation of CSCs is therefore likely to be an initiatory event in carcinogenesis. Furthermore, CSCs in established tumours exist in a dynamic and plastic state, with nonstem tumour cells thought to be capable of de-differentiation to CSCs. The regulation of the CSC state both during tumour initiation and within established tumours is a desirable therapeutic target and is mediated by epigenetic factors. In this review, we will explore the epigenetic parallels between induced pluripotency and the generation of CSCs, and discuss how the epigenetic regulation of CSCs opens up novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Rhiannon French
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal SciencesUniversity of OxfordOxfordUK
| |
Collapse
|
21
|
Takahashi K, Takenaka M, Okamoto A, Bowtell DDL, Kohno T. Treatment Strategies for ARID1A-Deficient Ovarian Clear Cell Carcinoma. Cancers (Basel) 2021; 13:1769. [PMID: 33917230 PMCID: PMC8068058 DOI: 10.3390/cancers13081769] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 02/06/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a histological subtype of ovarian cancer that is more frequent in Asian countries (~25% of ovarian cancers) than in US/European countries (less than 10%). OCCC is refractory to conventional platinum-based chemotherapy, which is effective against high-grade serous carcinoma (HGSC), a major histological subtype of ovarian cancer. Notably, deleterious mutations in SWI/SNF chromatin remodeling genes, such as ARID1A, are common in OCCC but rare in HGSC. Because this complex regulates multiple cellular processes, including transcription and DNA repair, molecularly targeted therapies that exploit the consequences of SWI/SNF deficiency may have clinical efficacy against OCCC. Three such strategies have been proposed to date: prioritizing a gemcitabine-based chemotherapeutic regimen, synthetic lethal therapy targeting vulnerabilities conferred by SWI/SNF deficiency, and immune checkpoint blockade therapy that exploits the high mutational burden of ARID1A-deficient tumor. Thus, ARID1A deficiency has potential as a biomarker for precision medicine of ovarian cancer.
Collapse
Affiliation(s)
- Kazuaki Takahashi
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.T.); (M.T.); (A.O.)
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Masataka Takenaka
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.T.); (M.T.); (A.O.)
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, Jikei University School of Medicine, Tokyo 105-8461, Japan; (K.T.); (M.T.); (A.O.)
| | - David D. L. Bowtell
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| |
Collapse
|
22
|
Wang L, Jia YM, Zuo J, Wang YD, Fan ZS, Feng L, Zhang X, Han J, Lyu WJ, Ni ZY. Gene mutations of esophageal squamous cell carcinoma based on next-generation sequencing. Chin Med J (Engl) 2021; 134:708-715. [PMID: 33725708 PMCID: PMC7990006 DOI: 10.1097/cm9.0000000000001411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is one of the most aggressive cancers without effective therapy. To explore potential molecular targets in ESCC, we quantified the mutation spectrum and explored the relationship between gene mutation and clinicopathological characteristics and programmed death-ligand 1 (PD-L1) expression. METHODS Between 2015 and 2019, 29 surgically resected ESCC tissues and adjacent normal tissues from the Fourth Hospital of Hebei Medical University were subjected to targeted next-generation sequencing. The expression levels of PD-L1 were detected by immunohistochemistry. Mutational signatures were extracted from the mutation count matrix by using non-negative matrix factorization. The relationship between detected genomic alterations and clinicopathological characteristics and PD-L1 expression was estimated by Spearman rank correlation analysis. RESULTS The most frequently mutated gene was TP53 (96.6%, 28/29), followed by NOTCH1 (27.6%, 8/29), EP300 (17.2%, 5/29), and KMT2C (17.2%, 5/29). The most frequently copy number amplified and deleted genes were CCND1/FGF3/FGF4/FGF19 (41.4%, 12/29) and CDKN2A/2B (10.3%, 3/29). By quantifying the contribution of the mutational signatures to the mutation spectrum, we found that the contribution of signature 1, signature 2, signature 10, signature 12, signature 13, and signature 17 was relatively high. Further analysis revealed genetic variants associated with cell cycle, chromatin modification, Notch, and Janus kinase-signal transducer and activator of transcription signaling pathways, which may be key pathways in the development and progression of ESCC. Evaluation of PD-L1 expression in samples showed that 13.8% (4/29) of samples had tumor proportion score ≥1%. 17.2% (5/29) of patients had tumor mutation burden (TMB) above 10 mut/Mb. All samples exhibited microsatellite stability. TMB was significantly associated with lymph node metastasis (r = 0.468, P = 0.010), but not significantly associated with PD-L1 expression (r = 0.246, P = 0.198). There was no significant correlation between PD-L1 expression and detected gene mutations (all P > 0.05). CONCLUSION Our research initially constructed gene mutation profile related to surgically resected ESCC in high-incidence areas to explore the mechanism underlying ESCC development and potential therapeutic targets.
Collapse
Affiliation(s)
- Long Wang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yi-Meng Jia
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Jing Zuo
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Yu-Dong Wang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Zhi-Song Fan
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Li Feng
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Xue Zhang
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Jing Han
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Wen-Jing Lyu
- Department of Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, China
| | - Zhi-Yu Ni
- The Affiliated Hospital of Hebei University, Baoding, Hebei 071000, China
- School of Basic Medical Science, Hebei University, Baoding, Hebei 071000, China
| |
Collapse
|
23
|
Giles KA, Gould CM, Achinger-Kawecka J, Page SG, Kafer GR, Rogers S, Luu PL, Cesare AJ, Clark SJ, Taberlay PC. BRG1 knockdown inhibits proliferation through multiple cellular pathways in prostate cancer. Clin Epigenetics 2021; 13:37. [PMID: 33596994 PMCID: PMC7888175 DOI: 10.1186/s13148-021-01023-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/04/2021] [Indexed: 12/13/2022] Open
Abstract
Background BRG1 (encoded by SMARCA4) is a catalytic component of the SWI/SNF chromatin remodelling complex, with key roles in modulating DNA accessibility. Dysregulation of BRG1 is observed, but functionally uncharacterised, in a wide range of malignancies. We have probed the functions of BRG1 on a background of prostate cancer to investigate how BRG1 controls gene expression programmes and cancer cell behaviour. Results Our investigation of SMARCA4 revealed that BRG1 is over-expressed in the majority of the 486 tumours from The Cancer Genome Atlas prostate cohort, as well as in a complementary panel of 21 prostate cell lines. Next, we utilised a temporal model of BRG1 depletion to investigate the molecular effects on global transcription programmes. Depleting BRG1 had no impact on alternative splicing and conferred only modest effect on global expression. However, of the transcriptional changes that occurred, most manifested as down-regulated expression. Deeper examination found the common thread linking down-regulated genes was involvement in proliferation, including several known to increase prostate cancer proliferation (KLK2, PCAT1 and VAV3). Interestingly, the promoters of genes driving proliferation were bound by BRG1 as well as the transcription factors, AR and FOXA1. We also noted that BRG1 depletion repressed genes involved in cell cycle progression and DNA replication, but intriguingly, these pathways operated independently of AR and FOXA1. In agreement with transcriptional changes, depleting BRG1 conferred G1 arrest. Conclusions Our data have revealed that BRG1 promotes cell cycle progression and DNA replication, consistent with the increased cell proliferation associated with oncogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01023-7.
Collapse
Affiliation(s)
- Katherine A Giles
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia.,Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia
| | - Cathryn M Gould
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia
| | - Joanna Achinger-Kawecka
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Scott G Page
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Georgia R Kafer
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Samuel Rogers
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Phuc-Loi Luu
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Anthony J Cesare
- Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, NSW, 2145, Australia
| | - Susan J Clark
- Epigenetics Laboratory, Genomics and Epigenetics Theme, Garvan Institute of Medical Research, Sydney, NSW, 2010, Australia.,St Vincent's Clinical School, UNSW Sydney, Sydney, NSW, 2000, Australia
| | - Phillippa C Taberlay
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, TAS, Hobart, 7000, Australia.
| |
Collapse
|
24
|
Wang R, Chen M, Ye X, Poon K. Role and potential clinical utility of ARID1A in gastrointestinal malignancy. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108360. [PMID: 34083049 DOI: 10.1016/j.mrrev.2020.108360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/26/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022]
Abstract
ARID1A (AT-rich interactive domain 1A) is a newly discovered tumor suppressor gene, and its encoded product is an important component of the SWI/SNF chromatin remodeling complex. ARID1A plays an important role in cell proliferation, invasion and metastasis, apoptosis, cell cycle regulation, epithelial mesenchymal transition, and the regulation of other of biological behaviors. Recently, ARID1A mutations have been increasingly reported in esophageal adenocarcinoma, gastric cancer, colorectal cancer, hepatocellular carcinoma, cholangiocarcinoma, pancreatic cancer, and other malignant tumors of the digestive system. This article reviews the relationship between ARID1A mutation and the molecular mechanisms of carcinogenesis, including microsatellite instability and the PI3K/ATK signaling pathway, and relates these mechanisms to the prognostic assessment of digestive malignancy. Further, this review describes the potential for molecular pathologic epidemiology (MPE) to provide new insights into environment-tumor-host interactions.
Collapse
Affiliation(s)
- Ruihua Wang
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Mei Chen
- Department of Gastroenterology, Shenzhen Hospital, Southern Medical University, Shenzhen, 518000, Guangdong Province, China.
| | - Xiaojun Ye
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| | - Karen Poon
- Program of Food Science and Technology, Division of Science and Technology, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519085, Guangdong Province, China.
| |
Collapse
|
25
|
Tomihara H, Carbone F, Perelli L, Huang JK, Soeung M, Rose JL, Robinson FS, Lissanu Deribe Y, Feng N, Takeda M, Inoue A, Poggetto ED, Deem AK, Maitra A, Msaouel P, Tannir NM, Draetta GF, Viale A, Heffernan TP, Bristow CA, Carugo A, Genovese G. Loss of ARID1A Promotes Epithelial-Mesenchymal Transition and Sensitizes Pancreatic Tumors to Proteotoxic Stress. Cancer Res 2020; 81:332-343. [PMID: 33158812 DOI: 10.1158/0008-5472.can-19-3922] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/19/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Cellular dedifferentiation is a key mechanism driving cancer progression. Acquisition of mesenchymal features has been associated with drug resistance, poor prognosis, and disease relapse in many tumor types. Therefore, successful targeting of tumors harboring these characteristics is a priority in oncology practice. The SWItch/Sucrose non-fermentable (SWI/SNF) chromatin remodeling complex has also emerged as a critical player in tumor progression, leading to the identification of several SWI/SNF complex genes as potential disease biomarkers and targets of anticancer therapies. AT-rich interaction domain-containing protein 1A (ARID1A) is a component of SWI/SNF, and mutations in ARID1A represent one of the most frequent molecular alterations in human cancers. ARID1A mutations occur in approximately 10% of pancreatic ductal adenocarcinomas (PDAC), but whether these mutations confer a therapeutic opportunity remains unclear. Here, we demonstrate that loss of ARID1A promotes an epithelial-mesenchymal transition (EMT) phenotype and sensitizes PDAC cells to a clinical inhibitor of HSP90, NVP-AUY922, both in vitro and in vivo. Although loss of ARID1A alone did not significantly affect proliferative potential or rate of apoptosis, ARID1A-deficient cells were sensitized to HSP90 inhibition, potentially by promoting the degradation of intermediate filaments driving EMT, resulting in cell death. Our results describe a mechanistic link between ARID1A defects and a quasi-mesenchymal phenotype, suggesting that deleterious mutations in ARID1A associated with protein loss exhibit potential as a biomarker for patients with PDAC who may benefit by HSP90-targeting drugs treatment. SIGNIFICANCE: This study identifies ARID1A loss as a promising biomarker for the identification of PDAC tumors that are potentially responsive to treatment with proteotoxic agents.
Collapse
Affiliation(s)
- Hideo Tomihara
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Federica Carbone
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Luigi Perelli
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Justin K Huang
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melinda Soeung
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, Texas
| | - Johnathon L Rose
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences Houston, Houston, Texas
| | - Frederick S Robinson
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yonathan Lissanu Deribe
- Department of Thoracic and Cardio Surgery-Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ningping Feng
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mitsunobu Takeda
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Akira Inoue
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edoardo Del Poggetto
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Angela K Deem
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Sheikh Ahmed Bin Zayed Al Nahyan Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pavlos Msaouel
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nizar M Tannir
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Giulio F Draetta
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas.,Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Andrea Viale
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Timothy P Heffernan
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Christopher A Bristow
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alessandro Carugo
- Therapeutics Discovery Division, TRACTION Platform, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Giannicola Genovese
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,David H. Koch Center for Applied Research of Genitourinary Cancers, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Yamamoto J, Suwa T, Murase Y, Tateno S, Mizutome H, Asatsuma-Okumura T, Shimizu N, Kishi T, Momose S, Kizaki M, Ito T, Yamaguchi Y, Handa H. ARID2 is a pomalidomide-dependent CRL4 CRBN substrate in multiple myeloma cells. Nat Chem Biol 2020; 16:1208-1217. [PMID: 32958952 DOI: 10.1038/s41589-020-0645-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 08/10/2020] [Indexed: 12/15/2022]
Abstract
The immunomodulatory drug (IMiD) thalidomide and its derivatives lenalidomide and pomalidomide are therapeutic agents used in the treatment of multiple myeloma. Although pomalidomide offers considerable clinical benefits to patients with lenalidomide-resistant multiple myeloma, the molecular mechanisms underlying its superior efficacy remain unclear. Here we show that ARID2, a component of the polybromo-associated BAF (PBAF) chromatin-remodeling complex, is a pomalidomide-induced neosubstrate of CRL4CRBN. BRD7, another subunit of PBAF, is critical for pomalidomide-induced ARID2 degradation. ARID2 is involved in transcriptional regulation of pomalidomide target genes including MYC. Pomalidomide is more effective than lenalidomide in degrading ARID2 and is capable of inhibiting MYC expression and proliferation in lenalidomide-resistant cell lines. Notably, ARID2 expression is associated with a poor prognosis and is higher in chemoresistant minimal residual disease (MRD) populations, and in patients with relapsed/refractory multiple myeloma. These findings suggest that ARID2 is a promising target for overcoming lenalidomide resistance in patients with multiple myeloma.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tetsufumi Suwa
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Yuki Murase
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Shumpei Tateno
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Hirotaka Mizutome
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | | | - Nobuyuki Shimizu
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan
| | - Tsutomu Kishi
- Department of Chemical Biology and Applied Chemistry, Nihon University, Koriyama, Japan
| | - Shuji Momose
- Department of Pathology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Masahiro Kizaki
- Department of Hematology, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Takumi Ito
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.,PRESTO, JST, Kawaguchi, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku, Japan.
| |
Collapse
|
27
|
Erfani M, Hosseini SV, Mokhtari M, Zamani M, Tahmasebi K, Alizadeh Naini M, Taghavi A, Carethers JM, Koi M, Brim H, Mokarram P, Ashktorab H. Altered ARID1A expression in colorectal cancer. BMC Cancer 2020; 20:350. [PMID: 32334542 PMCID: PMC7183124 DOI: 10.1186/s12885-020-6706-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 03/03/2020] [Indexed: 02/07/2023] Open
Abstract
Background ARID1A has been described as a tumor suppressor gene, participating in chromatin re-modeling, epithelial-mesenchymal-transition and many other cellular and molecular processes. It has been cited as a contribute in tumorigenesis. The role of ARID1A in CRC is not yet defined. Aim To investigate the role of ARID1A methylation and CNV in its expression in CRC cell lines and to examine the relationship between ARID1A status with survival and clinicopathologic characteristics in patients with CRC. Methods We used RT-PCR to determine both CNV and expression of ARID1A from six CRC cell lines. We used MSP to evaluate methylation of ARID1A. IHC was used to assess ARID1A protein expression. We also evaluated MSI and EMAST status in 18 paired CRC and adjacent normal tissues. 5AzadC was used to assess effect of DNA demethylation on ARID1A expression. Statistical analysis was performed to establish correlations between ARID1A expression and other parameters. Results Among the 18 CRC tumors studied, 7 (38.8%) and 5 tumors (27.7%) showed no or low ARID1A expression, respectively. We observed no significant difference in ARID1A expression for overall patient survival, and no difference between clinicopathological parameters including MSI and EMAST. However, lymphatic invasion was more pronounced in the low/no ARID1A expression group when compared to moderate and high expression group (33% VS. 16.6% respectively. ARID1A promoter methylation was observed in 4/6 (66%) cell lines and correlated with ARID1A mRNA expression level ranging from very low in SW48, to more pronounced in HCT116 and HT-29/219. Treatment with the methyltransferase inhibitor 5-Azacytidine (5-aza) resulted in a 25.4-fold and 6.1-fold increase in ARID1A mRNA expression in SW48 and SW742 cells, respectively, while there was no change in SW480 and LS180 cells. No ARID1A CNV was observed in the CRC cell lines. Conclusion ARID1A expression is downregulated in CRC tissues which correlates with it being a tumor suppressor protein. This finding confirms ARID1A loss of expression in CRC development. Our in-vitro results suggest high methylation status associates with reduced ARID1A expression and contributes to CRC tumorigenesis. However, there was no significant association between ARID1A loss of expression and clinicopathological characteristics. Future in-vivo analysis is warranted to further establish ARID1A role in colorectal neoplastic transformation.
Collapse
Affiliation(s)
- Mehran Erfani
- Autophagy Research Center and Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Vahid Hosseini
- Colorectal Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maral Mokhtari
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mozhdeh Zamani
- Colorectal Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Tahmasebi
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahvash Alizadeh Naini
- Department of Internal Medicine, Gastroenterology division, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Taghavi
- Department of Internal Medicine, Gastroenterology division, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - John M Carethers
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109-5368, USA
| | - Minoru Koi
- Departments of Internal Medicine and Human Genetics, and Rogel Cancer Center, University of Michigan, Ann Arbor, MI, 48109-5368, USA
| | - Hassan Brim
- Cancer Center and Department of Medicine, Howard University, College of Medicine, 2041 Georgia Avenue, N.W., Washington, D.C., 20060, USA
| | - Pooneh Mokarram
- Autophagy Research Center and Department of Biochemistry, Shiraz University of Medical Sciences, Shiraz, Iran. .,Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Hassan Ashktorab
- Cancer Center and Department of Medicine, Howard University, College of Medicine, 2041 Georgia Avenue, N.W., Washington, D.C., 20060, USA.
| |
Collapse
|
28
|
Mota STS, Vecchi L, Zóia MAP, Oliveira FM, Alves DA, Dornelas BC, Bezerra SM, Andrade VP, Maia YCP, Neves AF, Goulart LR, Araújo TG. New Insights into the Role of Polybromo-1 in Prostate Cancer. Int J Mol Sci 2019; 20:ijms20122852. [PMID: 31212728 PMCID: PMC6627401 DOI: 10.3390/ijms20122852] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/29/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023] Open
Abstract
The human protein Polybromo-1 (PBMR1/BAF180) is a component of the SWI/SNF chromatin-remodeling complex that has been reported to be deregulated in tumors. However, its role in prostate cancer (PCa) is largely unknown. In this study, we described the PBRM1 transcriptional levels and the protein expression/localization in tissues of PCa patients and in prostatic cell lines. Increased PBRM1 mRNA levels were found in PCa samples, when compared to benign disease, and were correlated with higher Gleason score. We also verified that only the nuclear localization of PBRM1 protein is correlated with a more aggressive disease and high Prostate-Specific Antigen (PSA) levels in tissue microarrays. Intriguing expression patterns of mRNA and protein were identified in the cell lines. Although PBRM1 protein was restricted to the nuclei, in tumor cell lines in non-neoplastic cells, it was also present in vesicular-like structures that were dispersed within the cytoplasm. We knocked-down PBRM1 in the castration-resistant PCa (CRPC) cell line PC-3 and we verified that PBRM1 promotes the expression of several markers of aggressiveness, including EpCAM, TGF-β, and N-Cadherin. Therefore, our data supported the hypothesis that PBRM1 displays a pivotal role in the promotion and maintenance of the malignant behavior of PCa, especially in CRPC.
Collapse
Affiliation(s)
- Sara T S Mota
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Lara Vecchi
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Mariana A P Zóia
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Fabrícia M Oliveira
- Faculty of Mathematics, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
| | - Douglas A Alves
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Bruno C Dornelas
- Pathology Division, Internal Medicine, University Hospital, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | | | | | - Yara C P Maia
- Medical Faculty, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| | - Adriana F Neves
- Laboratory of Molecular Biology, Federal University of Goias-GO, Goiânia-GO 75704-020, Brazil.
| | - Luiz Ricardo Goulart
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
- University of California Davis, Department of Medical Microbiology and Immunology, Davis, CA 95616, USA.
| | - Thaise G Araújo
- Laboratory of Genetics and Biotechnology, Institute of Biotechnology, Federal University of Uberlandia, Patos de Minas-MG 387400-128, Brazil.
- Laboratory of Nanobiotechnology, Institute of Biotechnology, Federal University of Uberlandia, Uberlandia-MG 38400-902, Brazil.
| |
Collapse
|
29
|
Inhibition of Triple-Negative Breast Cancer Cell Aggressiveness by Cathepsin D Blockage: Role of Annexin A1. Int J Mol Sci 2019; 20:ijms20061337. [PMID: 30884823 PMCID: PMC6471925 DOI: 10.3390/ijms20061337] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023] Open
Abstract
Triple-negative breast cancers (TNBCs) are more aggressive than other breast cancer (BC) subtypes and lack effective therapeutic options. Unraveling marker events of TNBCs may provide new directions for development of strategies for targeted TNBC therapy. Herein, we reported that Annexin A1 (AnxA1) and Cathepsin D (CatD) are highly expressed in MDA-MB-231 (TNBC lineage), compared to MCF-10A and MCF-7. Since the proposed concept was that CatD has protumorigenic activity associated with its ability to cleave AnxA1 (generating a 35.5 KDa fragment), we investigated this mechanism more deeply using the inhibitor of CatD, Pepstatin A (PepA). Fourier Transform Infrared (FTIR) spectroscopy demonstrated that PepA inhibits CatD activity by occupying its active site; the OH bond from PepA interacts with a CO bond from carboxylic acids of CatD catalytic aspartate dyad, favoring the deprotonation of Asp33 and consequently inhibiting CatD. Treatment of MDA-MB-231 cells with PepA induced apoptosis and autophagy processes while reducing the proliferation, invasion, and migration. Finally, in silico molecular docking demonstrated that the catalytic inhibition comprises Asp231 protonated and Asp33 deprotonated, proving all functional results obtained. Our findings elucidated critical CatD activity in TNBC cell trough AnxA1 cleavage, indicating the inhibition of CatD as a possible strategy for TNBC treatment.
Collapse
|
30
|
Agaimy A. SWI/SNF Complex-Deficient Soft Tissue Neoplasms: A Pattern-Based Approach to Diagnosis and Differential Diagnosis. Surg Pathol Clin 2019; 12:149-163. [PMID: 30709441 DOI: 10.1016/j.path.2018.10.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Loss of different components of the Switch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex has been increasingly recognized as a central molecular event driving the initiation and/or dedifferentiation of mostly lethal but histogenetically diverse neoplasms in different body organs. This review summarizes and discusses the morphologic and phenotypic diversity of primary soft tissue neoplasms characterized by SWI/SNF complex deficiency with an emphasis on convergent and divergent cytoarchitectural patterns.
Collapse
Affiliation(s)
- Abbas Agaimy
- Institute of Pathology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), University Hospital, Krankenhausstrasse 8-10, 91054 Erlangen, Germany.
| |
Collapse
|
31
|
Herreros-Villanueva M, Chen CC, Tsai EM, Er TK. Endometriosis-associated ovarian cancer: What have we learned so far? Clin Chim Acta 2019; 493:63-72. [PMID: 30776361 DOI: 10.1016/j.cca.2019.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 02/07/2023]
Abstract
Endometriosis is defined as the presence of ectopic endometrial tissue outside of the uterine cavity, most commonly in the ovaries and peritoneum. It is a complex disease that is influenced by multiple factors. It is also a common gynecological disorder and affects approximately 10-15% of all women of reproductive age. Recent molecular and pathological studies indicate that endometriosis may serve as a precursor of ovarian cancer (endometriosis-associated ovarian cancer, EAOC), particularly endometrioid and clear cell ovarian cancers. Although histological and epidemiological studies have demonstrated that endometriosis has a malignant potential, the molecular mechanism that underlies the malignant transformation of endometriosis is still controversial, and the precise mechanism of carcinogenesis must be fully elucidated. Currently, the development and improvement of a new sequencing technology, next-generation sequencing (NGS), has been increasingly relevant in cancer genomics research. Recently, NGS has also been utilized in clinical oncology to advance the personalized treatment of cancer. In addition, the sensitivity, speed, and cost make NGS a highly attractive platform compared to other sequencing modalities. For this reason, NGS may lead to the identification of driver mutations and underlying pathways associated with EAOC. Here, we present an overview of the molecular pathways that have led to the current opinions on the relationship between endometriosis and ovarian cancer.
Collapse
Affiliation(s)
- M Herreros-Villanueva
- Department of Gastroenterology, Hospital Donostia/Instituto Biodonostia, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Universidad del País Vasco UPV/EHU, San Sebastián, Spain
| | - Chih-Chieh Chen
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan; Rapid Screening Research Center for Toxicology and Biomedicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tze-Kiong Er
- Division of Laboratory Medicine, Asia University Hospital, Asia University, Taichung, Taiwan; Deparment of Food Nutrition and Health Biotechnology, Asia University, Taichung, Taiwan; Deparment of Biotechnology, Asia University, Taichung, Taiwan; Deparment of Nursing, Asia University, Taichung, Taiwan.
| |
Collapse
|
32
|
Lu B, Shi H. An In-Depth Look at Small Cell Carcinoma of the Ovary, Hypercalcemic Type (SCCOHT): Clinical Implications from Recent Molecular Findings. J Cancer 2019; 10:223-237. [PMID: 30662543 PMCID: PMC6329856 DOI: 10.7150/jca.26978] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/21/2018] [Indexed: 12/27/2022] Open
Abstract
Small cell carcinoma of the ovary, hypercalcemic type (SCCOHT) is a highly aggressive cancer in young women. The histogenesis remains unclear although a potential origin of germ cells has been suggested recently. The high throughput next generation sequencing techniques have facilitated the identification of inactivating SMARCA4 mutations as the driver of SCCOHT. These findings may greatly impact on the prevention, diagnosis, molecular classification and treatment of SCCOHTs. The SMARCA4 mutations, typically associated with dual loss of BRG1 and BRM expression, are highly sensitive and specific for the diagnosis of SCCOHT. Germline mutations of SMARCA4 support familial SCCOHT with a critical requirement of genetic counseling and possible prophylactic surgery for carriers. SCCOHT, malignant atypical teratoid/rhabdoid tumors, thoracic sarcomas and some undifferentiated carcinomas harbor rhabdoid morphology and mutations in the SMARC genes, generating an emerging molecular classification of SMARC-mutated tumors. A multi-modality treatment approach consisting of surgery and high dose multi-agent chemotherapy in atypical teratoid/rhabdoid tumors may have potential benefits for SCCOHT patients. Preliminary studies have implicated that the inhibitors targeting EZH2 and the receptor tyrosine kinase, and anti-PD-L1 immunotherapy might be potentially effective for SCCOHT patients. These recent advances on molecular genetics, diagnosis and treatment of SCCOHT address the necessity of multiple institutional collaboration work among oncologist, pathologist, genomic scientist, geneticist, molecular biologist, and pharmacologist.
Collapse
Affiliation(s)
- Bingjian Lu
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China.,Center for Uterine Cancer Diagnosis & Therapy Research of Zhejiang Province, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Haiyan Shi
- Department of Surgical Pathology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| |
Collapse
|
33
|
Rago F, DiMare MT, Elliott G, Ruddy DA, Sovath S, Kerr G, Bhang HEC, Jagani Z. Degron mediated BRM/SMARCA2 depletion uncovers novel combination partners for treatment of BRG1/SMARCA4-mutant cancers. Biochem Biophys Res Commun 2018; 508:109-116. [PMID: 30527810 DOI: 10.1016/j.bbrc.2018.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 08/23/2018] [Accepted: 09/02/2018] [Indexed: 12/11/2022]
Abstract
Recent studies have highlighted that cancer cells with a loss of the SWI/SNF complex catalytic subunit BRG1 are dependent on the remaining ATPase, BRM, making it an attractive target for cancer therapy. However, an understanding of the extent of target inhibition required to arrest cell growth, necessary to develop an appropriate therapeutic strategy, remains unknown. Here, we utilize tunable depletion of endogenous BRM using the SMASh degron, and interestingly observe that BRG1-mutant lung cancer cells require near complete depletion of BRM to robustly inhibit growth both in vitro and in vivo. Therefore, to identify pathways that synergize with partial BRM depletion and afford a deeper response, we performed a genome-wide CRISPR screen and discovered a combinatorial effect between BRM depletion and the knockout of various genes of the oxidative phosphorylation pathway and the anti-apoptotic gene MCL1. Together these studies provide an important framework to elucidate the requirements of BRM inhibition in the BRG1-mutant state with implications on the feasibility of targeting BRM alone, as well as reveal novel insights into pathways that can be exploited in combination toward deeper anti-tumor responses.
Collapse
Affiliation(s)
- Florencia Rago
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Matthew T DiMare
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - GiNell Elliott
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - David A Ruddy
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Sosathya Sovath
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Grainne Kerr
- Oncology, Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Hyo-Eun C Bhang
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA
| | - Zainab Jagani
- Oncology, Novartis Institutes for Biomedical Research, Cambridge, MA, USA.
| |
Collapse
|
34
|
S AS, Goutham R N A, Mohan S S. In silico screening of cancer-associated mutations in the HSA domain of BRG1 and its role in affecting the Arp-HSA sub-complex of SWI/SNF. Comput Biol Chem 2018; 77:109-115. [PMID: 30286321 DOI: 10.1016/j.compbiolchem.2018.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/24/2018] [Accepted: 07/03/2018] [Indexed: 11/30/2022]
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) complexes regulate the gene expression programs by remodeling the nucleosome architecture of the chromatin functional elements. These large multi-component complexes comprise eight or more subunits and are conserved from yeast to human. Noticeably, nuclear actin and actin-related proteins (Arps) are an integral part of these complexes and are known to directly interact with the helicase-SANT-associated (HSA) domain of ATPase subunit. Recently, SWI/SNF subunits are gaining importance because of the prevalence of cancer-causing mutations associated with them. The functional characterization of the mutations in the SWI/SNF subunits is important for understanding their role in tumorigenesis and identifying potential therapeutic strategies. To study the actin-related complex of human SWI/SNF and the cancer-associated mutations interfering Arp assembly with the ATPase subunit, we modelled the structure of the β-actin-BAF53A-HSA complex based on the yeast Arp-HSA complex (PDB ID: 4I6M). Seven deleterious mutations in the HSA domain of BRG1 were identified based on the functional screening of cancer-associated mutations in the COSMIC database. Detailed structural analysis of the six mutations (R466H, R469W, Y489C, K502N, R513Q and R521P) based on molecular dynamics (MD) simulations reveal the distinct effect of each mutation in destabilizing the structure of the Arp-HSA complex. Predominantly we could notice the long-range effect of the HSA mutations in influencing the dynamics of the Arp subunits.
Collapse
Affiliation(s)
- Alagu Sankareswaran S
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Arun Goutham R N
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India
| | - Suma Mohan S
- School of Chemical & Biotechnology, Sastra Deemed University, Tirumalaisamudram, Thanjavur, 613401, India.
| |
Collapse
|
35
|
Li N, Kong M, Zeng S, Hao C, Li M, Li L, Xu Z, Zhu M, Xu Y. Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice. FASEB J 2018; 33:327-338. [PMID: 30001167 DOI: 10.1096/fj.201800197r] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Liver regeneration is a complicated pathophysiologic process that is regulated by a myriad of signaling pathways and transcription factors. The interaction among these pathways and factors, either cooperatively or antagonistically, may ultimately lead to recovery and restoration of liver function or permanent loss of liver function and liver failure. In the present study, we investigated the mechanism whereby the chromatin remodeling protein brahma related gene 1 (Brg1) regulates liver regeneration in mice. The Smarca4-Flox strain of mice was crossbred with the Alb-Cre strain to generate hepatocyte-specific Brg1 knockout mice. Liver injury was induced by partial hepatectomy (PHx). We report that Brg1 deletion in hepatocyte compromised liver regeneration and dampened survival after PHx in mice. Brg1 interacted with β-catenin to potentiate Wnt signaling and promote hepatocyte proliferation. Mechanistically, Brg1 recruited lysine demethylase 4 (KDM4) to activate β-catenin target genes. Our data suggest that Brg1 might play an essential role maintaining hepatic homeostasis and contributing to liver repair.-Li, N., Kong, M., Zeng, S., Hao, C., Li, M., Li, L., Xu, Z., Zhu, M., Xu, Y. Brahma related gene 1 (Brg1) contributes to liver regeneration by epigenetically activating the Wnt/β-catenin pathway in mice.
Collapse
Affiliation(s)
- Nan Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ming Kong
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Sheng Zeng
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Chenzhi Hao
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Min Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Min Zhu
- Department of Anatomy, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Department of Pathophysiology, Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaboration Center for Cardiovascular Translational Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
36
|
Du M, Thompson J, Fisher H, Zhang P, Huang CC, Wang L. Genomic alterations of plasma cell-free DNAs in small cell lung cancer and their clinical relevance. Lung Cancer 2018; 120:113-121. [PMID: 29748005 DOI: 10.1016/j.lungcan.2018.04.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 04/05/2018] [Accepted: 04/10/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVES To identify genomic variations in cell-free DNA (cfDNA) and evaluate their clinical utility in small cell lung cancer (SCLC). MATERIALS AND METHODS We performed whole genome sequencing using plasma cfDNAs derived from 24 SCLC patients for copy number variation (CNV) analysis, and targeted sequencing using 17 pairs of plasma cfDNA and their matched gDNA for mutation analysis. We defined somatic mutations by comparing cfDNA to its matched gDNA with 5% variant alleles as the cutoff for mutation calls. We applied Kaplan-Meier to correlate the genomic alterations with overall survival (OS) and progression-free survival (PFS). RESULTS We observed widespread somatic copy-number alterations and mutations, including amplification of MYC at 8q24, FGF10 at 5p13, SOX2 at 3q26 and FGFR1 at 8p12, as well as deletion of TP53 at 17p13, RASSF1 at 3p21.3, RB1 at 13q14.2, FHIT at 3p14, and PTEN at 10q23. The most frequent mutations were genes involved in chromatin regulation (KMT2D, ARID1A, SETBP1 and PBRM1), PI3K/MTOR pathway(MTOR,PIK13G), Notch1 signalling pathway (NOTCH1), and DNA repair related gene ATRX. Kaplan-Meier analysis revealed poor OS and PFS in patients with somatic mutations in gene SETBP1 (P = 0.0061/0.0264, HR = 4.785/3.841, 95% CI = 2.014-28.25/1.286-16.58) and PBRM1 (P = 0.0276/0.0286, HR = 3.532/3.506, 95% CI = 1.275 to 25.34/1.26-24.87). Poor OS was also associated with somatic mutations in ATRX (P = 0.0099, HR = 4.024, 95% CI = 1.926-42.95), EP300 (P = 0.025/0.0622, HR = 3.382/2.891, 95% CI = 1.448-27.76/1.013-17.29), while poor PFS was associated with ATM mutation (P = 0.0038, HR = 4.604, 95% CI = 2.211-40.93). The mutation index produced by summing up the number of mutations in the five genes was significantly associated with the poor OS/PFS (P = 0.0185/0.0294) after adjusting the effect of the stage. CONCLUSIONS Our result supports blood plasma as a promising sample source for the genomic analysis in SCLC patients whose tumor tissues are scarcely available and demonstrates potential clinical utilities of cfDNA-based liquid biopsy for clinical management of this deadly disease.
Collapse
Affiliation(s)
- Meijun Du
- Department of Pathology and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jonathan Thompson
- Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Hannah Fisher
- Department of Pathology and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Peng Zhang
- Department of Pathology and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chiang-Ching Huang
- Joseph J. Zilber School of Public Health, University of Wisconsin, Milwaukee, WI, USA
| | - Liang Wang
- Department of Pathology and Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
37
|
Rother MB, van Attikum H. DNA repair goes hip-hop: SMARCA and CHD chromatin remodellers join the break dance. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0285. [PMID: 28847822 PMCID: PMC5577463 DOI: 10.1098/rstb.2016.0285] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2017] [Indexed: 12/20/2022] Open
Abstract
Proper signalling and repair of DNA double-strand breaks (DSB) is critical to prevent genome instability and diseases such as cancer. The packaging of DNA into chromatin, however, has evolved as a mere obstacle to these DSB responses. Posttranslational modifications and ATP-dependent chromatin remodelling help to overcome this barrier by modulating nucleosome structures and allow signalling and repair machineries access to DSBs in chromatin. Here we recap our current knowledge on how ATP-dependent SMARCA- and CHD-type chromatin remodellers alter chromatin structure during the signalling and repair of DSBs and discuss how their dysfunction impacts genome stability and human disease. This article is part of the themed issue ‘Chromatin modifiers and remodellers in DNA repair and signalling’.
Collapse
Affiliation(s)
- Magdalena B Rother
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
38
|
Okawa R, Banno K, Iida M, Yanokura M, Takeda T, Iijima M, Kunitomi-Irie H, Nakamura K, Adachi M, Umene K, Nogami Y, Masuda K, Kobayashi Y, Tominaga E, Aoki D. Aberrant chromatin remodeling in gynecological cancer. Oncol Lett 2017; 14:5107-5113. [PMID: 29113150 DOI: 10.3892/ol.2017.6891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 05/11/2017] [Indexed: 12/16/2022] Open
Abstract
Epigenetic regulatory mechanisms are a current focus in studies investigating cancer. Chromatin remodeling alters chromatin structure and regulates gene expression, and aberrant chromatin remodeling is involved in carcinogenesis. AT-rich interactive domain-containing protein 1A (ARID1A) and SWItch/sucrose non-fermentable-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 4 are remodeling factors that are mutated in numerous types of cancer. In gynecological cancer, ARID1A mutations have been identified in 46-57% of clear cell carcinoma and 30% of endometrioid carcinoma. Mutations of chromodomain helicase, DNA-binding protein 4 have been detected in 17-21% of endometrial serous cancer, and mutations of ARID1A and mixed-lineage leukemia 3 occur in 36 and 27% of uterine carcinosarcoma, respectively. These data suggest that aberrant chromatin remodeling is a potential cause of cancer, and have led to the development of novel proteins targeting these processes. Additional accumulation of information on the mechanisms of chromatin remodeling and markers for these events may promote personalized anticancer therapies.
Collapse
Affiliation(s)
- Ryuichiro Okawa
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kouji Banno
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Miho Iida
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Megumi Yanokura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Takeda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Moito Iijima
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Haruko Kunitomi-Irie
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kanako Nakamura
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Masataka Adachi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kiyoko Umene
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yuya Nogami
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Kenta Masuda
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Yusuke Kobayashi
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Eiichiro Tominaga
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Daisuke Aoki
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Tokyo 160-8582, Japan
| |
Collapse
|
39
|
Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Mod Pathol 2017; 30:1527-1537. [PMID: 28731042 DOI: 10.1038/modpathol.2017.75] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/14/2017] [Accepted: 05/15/2017] [Indexed: 12/14/2022]
Abstract
Thyroid papillary carcinoma is the most common endocrine neoplasm and generally carries a favorable prognosis. However, a small subset of papillary carcinomas transforms into anaplastic carcinoma, an undifferentiated cancer with a dismal prognosis. Recent studies using next-generation sequencing revealed the genomic landscape of papillary carcinoma and anaplastic carcinoma. However, risk factors for anaplastic transformation in papillary carcinoma remain obscure. In the present study, we investigated molecular alterations of papillary carcinoma and anaplastic carcinoma components in 27 tumors in which anaplastic carcinoma coexisted with antecedent papillary carcinoma. We conducted direct sequencing for BRAF, TERT promoter and PIK3CA, and immunohistochemistry for p53, TTF-1 and subunits of the SWI/SNF complex (ARID1A, ARID1B, ATRX, SMARCA2, SMARCA4, SMARCB1, and PBRM1). BRAFV600E and TERT promoter mutated at the rate of 90% and 95%, respectively, and these mutational statuses were almost identical between the papillary carcinoma and anaplastic carcinoma components. PIK3CA mutation was positive in 33% of our samples with a heterogeneous mutation pattern of the papillary carcinoma and anaplastic carcinoma components. Aberrant expression of p53 and loss of TTF-1 were present in 63 and 59%, respectively, and these two alterations were confined to the anaplastic carcinoma components. There was a loss of the SWI/SNF complex in a subset of the tumors with a heterogeneous pattern of the papillary carcinoma and anaplastic carcinoma components: SMARCA4 in 4% and PBRM1 in 4%. In a multivariate comparison between the antecedent papillary carcinoma components and control papillary carcinomas without anaplastic transformation, TERT promoter mutation was independently associated with anaplastic transformation. Collectively, papillary carcinoma-derived anaplastic carcinomas are characterized by BRAF and TERT promoter mutations, and these mutations occur prior to anaplastic transformation. Alterations of PIK3CA and the SWI/SNF complex are relatively rare and temporally heterogeneous. Of note, a papillary carcinoma harboring TERT promoter mutation is at higher risk for anaplastic transformation.
Collapse
|
40
|
SMARCA4-deficient thoracic sarcoma: a distinctive clinicopathological entity with undifferentiated rhabdoid morphology and aggressive behavior. Mod Pathol 2017; 30:1422-1432. [PMID: 28643792 DOI: 10.1038/modpathol.2017.61] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/27/2017] [Accepted: 04/27/2017] [Indexed: 01/19/2023]
Abstract
A distinct subset of thoracic sarcomas with undifferentiated rhabdoid morphology and SMARCA4 inactivation has recently been described, and potential targeted therapy for SMARC-deficient tumors is emerging. We sought to validate the clinicopathological features of SMARCA4-deficient thoracic sarcomas. Clinicopathological information was gathered for 40 undifferentiated thoracic tumors with rhabdoid morphology (mediastinum (n=18), lung (n=14), pleura (n=8)). Thymic carcinomas (n=11) were used as a comparison group. Immunohistochemistry included BRG1 (SMARCA4), BRM (SMARCA2), INI-1 (SMARCB1), pan-cytokeratin, desmin, NUT, S-100 protein, TTF1, CD34, and SOX2. BRG1 loss was present in 12 of 40 rhabdoid thoracic tumors (30%): 7 of 18 in mediastinum (39%), 2 of 8 in pleura (25%), and 3 of 14 in lung (21%). All BRG1-deficient tumors tested for BRM (n=8) showed concomitant loss. All thymic carcinomas showed retained BRG1 and INI-1. Morphologically, tumors with BRG1 loss showed sheets of monotonous ovoid cells with indistinct cell borders, abundant eosinophilic cytoplasm, and prominent nucleoli. Scattered areas with rhabdoid morphology (ie, eccentric nuclei, dense eosinophilic cytoplasm, discohesion) were present in all the cases. SMARCA4/BRG1-deficient sarcomas showed rare cells positive for cytokeratin in 10 cases (83%). One showed rare TTF1-positive cells. All were negative for desmin, NUT, and S-100 protein. CD34 was positive in three of five (60%) BRG1-deficient tumors tested. SOX2 was positive in all four BRG1-deficient tumors tested, and negative in all seven tested cases with retained BRG1. SMARCA4/BRG1-deficient sarcomas occurred at median age of 59 years (range 44-76) with male predominance (9:3) and had worse 2-year survival compared with BRG1-retained tumors (12.5% vs 64.4%, P=0.02). SMARCA4-deficient thoracic sarcomas can be identified based on their distinctive high-grade rhabdoid morphology, and the diagnosis can be confirmed by immunohistochemistry. Identification of these tumors is clinically relevant due to their aggressive behavior, poor prognosis, and potential targeted therapy.
Collapse
|
41
|
Precision medicine for hepatocellular carcinoma: driver mutations and targeted therapy. Oncotarget 2017; 8:55715-55730. [PMID: 28903454 PMCID: PMC5589693 DOI: 10.18632/oncotarget.18382] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the third most frequent cause of tumor-related mortality and there are an estimated approximately 850,000 new cases annually. Most HCC patients are diagnosed at middle or advanced stage, losing the opportunity of surgery. The development of HCC is promoted by accumulated diverse genetic mutations, which confer selective growth advantages to tumor cells and are called "driver mutations". The discovery of driver mutations provides a novel precision medicine strategy for late stage HCC, called targeted therapy. In this review, we summarized currently discovered driver mutations and corresponding signaling pathways, made an overview of identification methods of driver mutations and genes, and classified targeted drugs for HCC. The knowledge of mutational landscape deepen our understanding of carcinogenesis and promise future precision medicine for HCC patients.
Collapse
|
42
|
Yoshida A, Kobayashi E, Kubo T, Kodaira M, Motoi T, Motoi N, Yonemori K, Ohe Y, Watanabe SI, Kawai A, Kohno T, Kishimoto H, Ichikawa H, Hiraoka N. Clinicopathological and molecular characterization of SMARCA4-deficient thoracic sarcomas with comparison to potentially related entities. Mod Pathol 2017; 30:797-809. [PMID: 28256572 DOI: 10.1038/modpathol.2017.11] [Citation(s) in RCA: 144] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 12/24/2022]
Abstract
A growing number of studies suggest critical tumor suppressor roles of the SWI/SNF chromatin remodeling complex in a variety of human cancers. The recent discovery of SMARCA4-deficient thoracic sarcomas has added to the list of tumor groups with the SMARCA4 inactivating mutation. To better characterize these tumors and establish their nosological status, we undertook a clinicopathological and molecular analysis of 12 SMARCA4-deficient thoracic sarcomas and compared them with three potentially related disease entities. Eleven men and one woman with SMARCA4-deficient thoracic sarcomas (aged 27-82 years, median 39 years) were included in the study. Most of the patients had heavy smoking exposure and pulmonary emphysema/bullae. The primary tumors were large and involved the thoracic region in all cases and simultaneously affected the abdominal cavity in 3 cases. The patients followed a rapid course, with a median survival of 7 months. Histologically, all tumors showed diffuse sheets of mildly dyscohesive, relatively monotonous, and undifferentiated epithelioid cells with prominent nucleoli. Immunohistochemically, all tumors demonstrated a complete absence (8 cases) or diffuse severe reduction (4 cases) of SMARCA4 expression. Cytokeratin, CD34, SOX2, SALL4, and p53 were expressed in 6/12, 10/12, 10/12, 10/12, and 7/10 cases, respectively. SMARCA2 expression was deficient in 11/12 cases, and none (0/8) expressed claudin-4. Targeted sequencing was performed in 5 cases and demonstrated the inactivating SMARCA4 mutation in each case and uncovered alterations in TP53 (5/5), NF1 (2/5), CDKN2A (2/5), KRAS (1/5), and KEAP1 (1/5), among others. Comparative analysis supported the distinctiveness of SMARCA4-deficient thoracic sarcomas as they were distinguishable from 13 malignant rhabdoid tumors, 15 epithelioid sarcomas, and 12 SMARCA4-deficient lung carcinomas based on clinicopathological and immunohistochemical grounds. SMARCA4-deficient thoracic sarcomas constitute a unique, highly lethal entity that requires full recognition and differentiation from other epithelioid malignancies involving the thoracic region.
Collapse
Affiliation(s)
- Akihiko Yoshida
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan.,Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan
| | - Eisuke Kobayashi
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kubo
- Division of Translational Genomics, Exploratory Oncology Research &Clinical Trial Center, National Cancer Center, Tokyo, Japan
| | - Makoto Kodaira
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Toru Motoi
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Noriko Motoi
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| | - Kan Yonemori
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Medical Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yuichiro Ohe
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Shun-Ichi Watanabe
- Department of Thoracic Surgery, National Cancer Center Hospital, Tokyo, Japan
| | - Akira Kawai
- Rare Cancer Center, National Cancer Center Hospital, Tokyo, Japan.,Department of Musculoskeletal Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Takashi Kohno
- Division of Genome Biology, National Cancer Center Research Institute, Tokyo, Japan
| | - Hiroshi Kishimoto
- Department of Pathology, Saitama Children's Medical Center, Saitama, Japan
| | - Hitoshi Ichikawa
- Division of Translational Genomics, Exploratory Oncology Research &Clinical Trial Center, National Cancer Center, Tokyo, Japan.,Department of Clinical Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Nobuyoshi Hiraoka
- Department of Pathology and Clinical Laboratories, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
43
|
Capaldo BJ, Roller D, Axelrod MJ, Koeppel AF, Petricoin EF, Slingluff CL, Weber MJ, Mackey AJ, Gioeli D, Bekiranov S. Systems Analysis of Adaptive Responses to MAP Kinase Pathway Blockade in BRAF Mutant Melanoma. PLoS One 2015; 10:e0138210. [PMID: 26405815 PMCID: PMC4583389 DOI: 10.1371/journal.pone.0138210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/27/2015] [Indexed: 12/31/2022] Open
Abstract
Fifty percent of cutaneous melanomas are driven by activated BRAFV600E, but tumors treated with RAF inhibitors, even when they respond dramatically, rapidly adapt and develop resistance. Thus, there is a pressing need to identify the major mechanisms of intrinsic and adaptive resistance and develop drug combinations that target these resistance mechanisms. In a combinatorial drug screen on a panel of 12 treatment-naïve BRAFV600E mutant melanoma cell lines of varying levels of resistance to mitogen-activated protein kinase (MAPK) pathway inhibition, we identified the combination of PLX4720, a targeted inhibitor of mutated BRaf, and lapatinib, an inhibitor of the ErbB family of receptor tyrosine kinases, as synergistically cytotoxic in the subset of cell lines that displayed the most resistance to PLX4720. To identify potential mechanisms of resistance to PLX4720 treatment and synergy with lapatinib treatment, we performed a multi-platform functional genomics analysis to profile the genome as well as the transcriptional and proteomic responses of these cell lines to treatment with PLX4720. We found modest levels of resistance correlated with the zygosity of the BRAF V600E allele and receptor tyrosine kinase (RTK) mutational status. Layered over base-line resistance was substantial upregulation of many ErbB pathway genes in response to BRaf inhibition, thus generating the vulnerability to combination with lapatinib. The transcriptional responses of ErbB pathway genes are associated with a number of transcription factors, including ETS2 and its associated cofactors that represent a convergent regulatory mechanism conferring synergistic drug susceptibility in the context of diverse mutational landscapes.
Collapse
Affiliation(s)
- Brian J. Capaldo
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Devin Roller
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Mark J. Axelrod
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alex F. Koeppel
- Bioinfomatics Core Facility, University of Virginia, Charlottesville, Virginia, United States of America
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, College of Science, George Mason University, Manassas, Virginia, United States of America
| | - Craig L. Slingluff
- Department of Surgery, University of Virginia, Charlottesville, Virginia, United States of America
| | - Michael J. Weber
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Aaron J. Mackey
- Center for Public Health Genomics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Daniel Gioeli
- Department of Microbiology, Immunology, and Cancer, University of Virginia, Charlottesville, Virginia, United States of America
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
44
|
Yoshimoto T, Matsubara D, Nakano T, Tamura T, Endo S, Sugiyama Y, Niki T. Frequent loss of the expression of multiple subunits of the SWI/SNF complex in large cell carcinoma and pleomorphic carcinoma of the lung. Pathol Int 2015; 65:595-602. [PMID: 26345631 DOI: 10.1111/pin.12350] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/08/2015] [Indexed: 12/18/2022]
Abstract
The switch/sucrose non-fermenting (SWI/SNF) complex has recently emerged as a novel tumor suppressor in various human cancers. In the present study, we analyzed the expression of multiple SWI/SNF subunits in primary non-small cell lung cancer (NSCLC). A total of 133 NSCLC, consisting of 25 squamous cell carcinomas (SCC), 70 adenocarcinomas (AD), 16 large cell carcinomas (LC), and 22 pleomorphic carcinomas (PL), were immunohistochemically examined for the expression of BRG1, BRM, BAF47, ARID1A, and ARID1B. The frequency at which reductions in the expression of BRG1 were observed was significantly higher in the LC-PL group (13/38, 34.2%) than in the SCC-AD group (7/95, 7.4%). Similarly, the frequency at which reductions in the expression of BRM were observed was significantly higher in the LC-PL group (17/38, 44.7%) than in the SCC-AD group (14/95, 14.7%). The loss of the expression of ARID1A, ARID1B, and BAF47 was observed only in a fraction of NSCLC cases. Furthermore, the frequency at which the concurrent loss of multiple subunits of the SWI/SNF complex was observed was significantly higher in the LC-PL group (10/38, 26.3%) than in the SCC-AD group (8/95, 8.4%). Collectively, these results indicate that the loss of the SWI/SNF complex was related to dedifferentiation in NSCLC.
Collapse
Affiliation(s)
- Taichiro Yoshimoto
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Daisuke Matsubara
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan.,Molecular Pathology Laboratory, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Tomoyuki Nakano
- Division of General Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Tomoko Tamura
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| | - Shunsuke Endo
- Division of General Thoracic Surgery, Jichi Medical University, Shimotsuke, Japan
| | - Yukihiko Sugiyama
- Division of Pulmonary Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Toshiro Niki
- Department of Integrative Pathology, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
45
|
Ozawa Y, Nakamura Y, Fujishima F, Felizola SJA, Takeda K, Okamoto H, Ito K, Ishida H, Konno T, Kamei T, Ohuchi N, Sasano H. Decreased expression of ARID1A contributes to infiltrative growth of esophageal squamous cell carcinoma. TOHOKU J EXP MED 2015; 235:185-91. [PMID: 25757668 DOI: 10.1620/tjem.235.185] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The clinical outcome for esophageal squamous cell carcinoma (ESCC) patients is often poor because of the invasive nature of this tumor type. AT-rich interactive domain 1A (ARID1A) functions as a tumor suppressor, and its gene mutation has been reported in various human malignancies. ARID1A is a non-catalytic subunit of the SWItch/Sucrose Non Fermentable (SWI/SNF) chromatin-remodeling complex that regulates gene transcription. Decreased expression of ARID1A protein has been reported to decrease the expression of E-cadherin, an adhesion protein. However, the correlation between ARID1A and E-cadherin expression status in ESCC remains largely unknown. To address this issue, we examined the expression of ARID1A and E-cadherin in tumor specimens excised from 83 ESCC patients using immunohistochemical analysis. The intensity of the ARID1A immunoreactivity was significantly lower in tumors with a growth pattern characterized by ill-defined borders than that in tumors with an expansive growth pattern having a well-demarcated border or tumors with an intermediate growth pattern. Thus, decreased ARID1A immunoreactivity correlated with infiltrative growth of ESCC. In contrast, E-cadherin status did not correlate with the infiltrative growth pattern of ESCC. Moreover, ARID1A expression status did not significantly correlate with any of other clinicopathological factors, E-cadherin expression levels, or the clinical outcome of the patients. On the other hand, the patients with tumors expressing low levels of E-cadherin exhibited significantly lower survival rates than those with high expression. In conclusion, reduced ARID1A expression in tumor tissues contributes to infiltrative growth of ESCC, irrespective of E-cadherin expression levels.
Collapse
Affiliation(s)
- Yohei Ozawa
- Division of Advanced Surgical Science and Technology, Tohoku University Graduate School of Medicine; Department of Pathology, Tohoku University Graduate School of Medicine, Sendai, Miyagi, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Skulte KA, Phan L, Clark SJ, Taberlay PC. Chromatin remodeler mutations in human cancers: epigenetic implications. Epigenomics 2015; 6:397-414. [PMID: 25333849 DOI: 10.2217/epi.14.37] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Chromatin remodeler complexes exhibit the ability to alter nucleosome composition and positions, with seemingly divergent roles in the regulation of chromatin architecture and gene expression. The outcome is directed by subunit variation and interactions with accessory factors. Recent studies have revealed that subunits of chromatin remodelers display an unexpectedly high mutation rate and/or are inactivated in a number of cancers. Consequently, a repertoire of epigenetic processes are likely to be affected, including interactions with histone modifying factors, as well as the ability to precisely modulate nucleosome positions, DNA methylation patterns and potentially, higher-order genome structure. However, the true significance of chromatin remodeler genetic aberrations in promoting a cascade of epigenetic changes, particularly during initiation and progression of cancer, remains largely unknown.
Collapse
Affiliation(s)
- Katherine A Skulte
- Chromatin Dynamics Group, Cancer Division, Garvan Institute of Medical Research, 394 Victoria Rd, Darlinghurst 2010, New South Wales, Australia
| | | | | | | |
Collapse
|
47
|
Abstract
Rhabdoid tumors (RT), or malignant rhabdoid tumors, are among the most aggressive and lethal forms of human cancer. They can arise in any location in the body but are most commonly observed in the brain, where they are called atypical teratoid/rhabdoid tumors (AT/RT), and in the kidneys, where they are called rhabdoid tumors of the kidney. The vast majority of rhabdoid tumors present with a loss of function in the SMARCB1 gene, also known as INI1, BAF47, and hSNF5, a core member of the SWI/SNF chromatin-remodeling complex. Recently, mutations in a 2nd locus of the SWI/SNF complex, the SMARCA4 gene, also known as BRG1, were found in rhabdoid tumors with retention of SMARCB1 expression. Familial cases may occur in a condition known as rhabdoid tumor predisposition syndrome (RTPS). In RTPS, germline inactivation of 1 allele of a gene occurs. When the mutation occurs in the SMARCB1 gene, the syndrome is called RTPS1, and when the mutation occurs in the SMARCA4 gene it is called RTPS2. Children presenting with RTPS tend to develop tumors at a younger age, but the impact that germline mutation has on survival remains unclear. Adults who carry the mutation tend to develop multiple schwannomas. The diagnosis of RTPS should be considered in patients with RT, especially if they have multiple primary tumors, and/or in individuals with a family history of RT. Because germline mutations result in an increased risk of carriers developing RT, genetic counseling for families with this condition is recommended.
Collapse
Affiliation(s)
- Simone T Sredni
- 1 Ann and Robert H. Lurie Children's Hospital of Chicago-Division of Pediatric Neurosurgery, 225 E. Chicago Avenue Box #28, Chicago, IL 60611, USA
| | | |
Collapse
|
48
|
Huang HT, Chen SM, Pan LB, Yao J, Ma HT. Loss of function of SWI/SNF chromatin remodeling genes leads to genome instability of human lung cancer. Oncol Rep 2014; 33:283-91. [PMID: 25370573 DOI: 10.3892/or.2014.3584] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 09/18/2014] [Indexed: 11/05/2022] Open
Abstract
SWI/SNF chromatin remodeling complexes are frequently mutated in a variety of human cancers. We investigated the mutation incidence and the role of mSWI/SNF (BAF) complexes in human lung cancer. In the present study, we analyzed somatic mutations of BAF complexes and other driver mutated genes of lung carcinoma deposited in the Catalogue of Somatic Mutations in Cancer (COSMIC) database. BAF complexes were mutated in 282 of 803 (35.12%) lung carcinoma samples analyzed, ranking second to TP53. Significantly, BAF-mutated samples exhibited more genomic mutations than BAF wild-type ones. Moreover, a significant positive correlation existed between the BAF mutations and overall genomic mutations in these lung carcinoma samples (P<0.001, Pearson's correlation analysis). Specifically, the mutant-typing of 6 BAF genes, SMARCA4, ARID2, ARID1B, BCL11A, BCL11B and BRD9 was associated with more overall mutations in the lung carcinoma samples. A mutation reporter system was developed by means of the establishment of stable cell sublines with slippage-luciferase transcript in a lung adenocarcinoma cell line, Calu-3. SMARCA4, the most frequently mutated BAF gene in lung cancer, was stably knocked down by pSUPER constructs carrying short hairpin RNA (shRNA). Mutation ratios determined from the mutation reporters of Calu-3 cells were significantly increased upon stable SMARCA4 knockdown. We demonstrated that genetic mutations of BAF complexes lead to genome instability of lung carcinoma. Therefore, BAF complexes play an important role in maintaining genome stability in human lung cancer.
Collapse
Affiliation(s)
- Hai-Tao Huang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Shao-Mu Chen
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Liang-Bin Pan
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jie Yao
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hai-Tao Ma
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
49
|
The expanding family of SMARCB1(INI1)-deficient neoplasia: implications of phenotypic, biological, and molecular heterogeneity. Adv Anat Pathol 2014; 21:394-410. [PMID: 25299309 DOI: 10.1097/pap.0000000000000038] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since the description of atypical teratoid/rhabdoid tumors of the central nervous system and renal/extrarenal malignant rhabdoid tumors in children, the clinicopathologic spectrum of neoplasms having in common a highly variable rhabdoid cell component (0% to 100%) and consistent loss of nuclear SMARCB1 (INI1) expression has been steadily expanding to include cribriform neuroepithelial tumor of the ventricle, renal medullary carcinoma and a subset of collecting duct carcinoma, epithelioid sarcoma, subsets of miscellaneous benign and malignant soft tissue tumors, and rare rhabdoid carcinoma variants of gastroenteropancreatic, sinonasal, and genitourinary tract origin. Although a majority of SMARCB1-deficient neoplasms arise de novo, the origin of SMARCB1-deficient neoplasia in the background of a phenotypically or genetically definable differentiated SMARCB1-intact "parent neoplasm" has been convincingly demonstrated, highlighting the rare occurrence of rhabdoid tumors as "double-hit neoplasia." As a group, SMARCB1-deficient neoplasms occur over a wide age range (0 to 80 y), may be devoid of rhabdoid cells or display uniform rhabdoid morphology, and follow a clinical course that varies from benign to highly aggressive causing death within a few months irrespective of aggressive multimodality therapy. Generally applicable criteria that would permit easy recognition of these uncommon neoplasms do not exist. Diagnosis is based on site-specific and entity-specific sets of clinicopathologic, immunophenotypic, and/or molecular criteria. SMARCB1 immunohistochemistry has emerged as a valuable tool in confirming or screening for SMARCB1-deficient neoplasms. This review summarizes the different phenotypic and topographic subgroups of SMARCB1-deficient neoplasms including sporadic and familial, benign and malignant, and rhabdoid and nonrhabdoid variants, highlighting their phenotypic heterogeneity and molecular complexity.
Collapse
|
50
|
Immunohistochemical detection of ARID1A in colorectal carcinoma: loss of staining is associated with sporadic microsatellite unstable tumors with medullary histology and high TNM stage. Hum Pathol 2014; 45:2430-6. [PMID: 25311944 DOI: 10.1016/j.humpath.2014.08.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 08/08/2014] [Accepted: 08/13/2014] [Indexed: 12/13/2022]
Abstract
AT-rich interactive domain-containing protein 1A (ARID1A), a chromatin remodeling gene recently discovered to be a tumor suppressor in ovarian cancers, has been found to be mutated at low frequencies in many other tumors including colorectal carcinoma (CRC). An association between ARID1A alteration and DNA mismatch repair (MMR) deficiency has been implicated; understanding this association may facilitate the understanding of the role of ARID1A in the various tumors. In this pilot study, we analyzed the immunohistochemical expression of ARID1A in a consecutive series of 257 CRCs that fulfilled a set of relaxed criteria for Lynch syndrome screening; 59 (23%) were MMR deficient by immunohistochemistry (44 MLH1/PMS2 deficient, 9 MSH2/MSH6 deficient, 4 MSH6 deficient, and 2 PMS2 deficient). ARID1A loss was observed in 9% (22/257) of the cohort: 24% of MMR-deficient tumors (14/59, 13 of the 14 being MLH1/PMS2 deficient) and 4% of MMR-normal tumors (8/198) (P < .05). MLH1 (mutL homolog 1) promoter hypermethylation was observed in 10 of the 13 MLH1/PMS2-deficient/ARID1A-loss tumors, indicating an association between ARID1A loss and sporadic microsatellite unstable CRCs. Among the MMR-deficient cases, ARID1A loss correlated with old age (P = .04), poor tumor differentiation (P < .01), medullary histology (P < .01), and an increased rate of nodal and distant metastasis (P = .03); these patients also trended toward a worse 5-year overall survival. Among MMR-normal tumors, no differences in clinicopathological features were detected between the groups stratified by ARID1A. In conclusion, our results suggest that ARID1A loss may be linked to a specific subset of sporadic microsatellite unstable CRCs that may be medullary but is more likely to present with metastatic disease, warranting further investigation.
Collapse
|