1
|
Atanasov G, Rusew RI, Gelev VM, Chanev CD, Nikolova R, Shivachev BL, Petrov OI, Apostolova MD. New Heterocyclic Combretastatin A-4 Analogs: Synthesis and Biological Activity of Styryl-2(3 H)-benzothiazolones. Pharmaceuticals (Basel) 2021; 14:1331. [PMID: 34959731 PMCID: PMC8703450 DOI: 10.3390/ph14121331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/11/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Here, we describe the synthesis, characterization, and biological activities of a series of 26 new styryl-2(3H)-benzothiazolone analogs of combretastatin-A4 (CA-4). The cytotoxic activities of these compounds were tested in several cell lines (EA.hy926, A549, BEAS-2B, MDA-MB-231, HT-29, MCF-7, and MCF-10A), and the relations between structure and cytotoxicity are discussed. From the series, compound (Z)-3-methyl-6-(3,4,5-trimethoxystyryl)-2(3H)-benzothiazolone (26Z) exhibits the most potent cytotoxic activity (IC50 0.13 ± 0.01 µM) against EA.hy926 cells. 26Z not only inhibits vasculogenesis but also disrupts pre-existing vasculature. 26Z is a microtubule-modulating agent and inhibits a spectrum of angiogenic events in EA.hy926 cells by interfering with endothelial cell invasion, migration, and proliferation. 26Z also shows anti-proliferative activity in CA-4 resistant cells with the following IC50 values: HT-29 (0.008 ± 0.001 µM), MDA-MB-231 (1.35 ± 0.42 µM), and MCF-7 (2.42 ± 0.48 µM). Cell-cycle phase-specific experiments show that 26Z treatment results in G2/M arrest and mitotic spindle multipolarity, suggesting that drug-induced centrosome amplification could promote cell death. Some 26Z-treated adherent cells undergo aberrant cytokinesis, resulting in aneuploidy that perhaps contributes to drug-induced cell death. These data indicate that spindle multipolarity induction by 26Z has an exciting chemotherapeutic potential that merits further investigation.
Collapse
Affiliation(s)
- Gjorgji Atanasov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Vladimir M. Gelev
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Christo D. Chanev
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Rosica Nikolova
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria; (R.I.R.); (R.N.); (B.L.S.)
| | - Ognyan I. Petrov
- Department of Pharmaceutical and Applied Organic Chemistry, Faculty of Chemistry and Pharmacy, Sofia University St. Kliment Ohridski, 1 James Bourchier Blvd., 1164 Sofia, Bulgaria; (V.M.G.); (C.D.C.)
| | - Margarita D. Apostolova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
| |
Collapse
|
2
|
Qu L, Wang JH, Du JX, Kang P, Niu XQ, Yin LZ. Use of nimotuzumab combined with cisplatin in treatment of nasopharyngeal carcinoma and its effect on expressions of VEGF and MMP-2. Clin Transl Oncol 2021; 23:1342-1349. [PMID: 33517541 DOI: 10.1007/s12094-020-02522-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/30/2020] [Indexed: 11/28/2022]
Abstract
PURPOSE This paper aims to observe the expressions of VEGF and MMP-2 in patients with nasopharyngeal carcinoma treated by nimotuzumab combined with cisplatin. METHODS Altogether, 104 patients with nasopharyngeal carcinoma treated in our hospital from April 2014 to August 2016 were selected as research subjects. Among them, 50 patients treated with cisplatin were divided into a control group and 54 patients treated with nimotuzumab combined with cisplatin were divided into an observation group. The two groups of patients were compared in terms of efficacy after treatment and incidence of adverse reactions. Changes of serum VEGF and MMP-2 concentrations before and after treatment were detected using enzyme-linked immunosorbent assay (ELISA), and the 3-year overall survival (OS) of patients was observed. RESULTS Compared with the control group, patients in the observation group had significantly higher total remission rate (RR) (P < 0.05) and significantly lower incidence of adverse reactions (P < 0.05). Before treatment, there was no significant difference between the observation and control groups in the concentrations of VEGF and MMP-2 (P > 0.05). After treatment, the concentrations in the two groups were significantly lower than those before treatment (P < 0.05), and the concentrations in the observation group were significantly lower than those in the control group (P < 0.05). There was no significant difference in the 3-year OS between the observation and control groups (P > 0.05). CONCLUSIONS Nimotuzumab combined with cisplatin could improve the conditions of patients with nasopharyngeal carcinoma. After treatment, the expression of VEGF and MMP-2 decreased significantly. We speculated that it improves the survival rate of patients by reducing the expression of VEGF and MMP-2.
Collapse
Affiliation(s)
- L Qu
- Department of Education, Yantaishan Hospital, Yantai, 264000, People's Republic of China
| | - J H Wang
- Department of Pharmacy, Yantai Yuhuangding Hospital, Yantai, 264000, People's Republic of China
| | - J X Du
- Department of Neurology, Zhangqiu District People's Hospital, Jinan, 250200, People's Republic of China
| | - P Kang
- Department of Rehabilitation, Zhangqiu District People's Hospital, Jinan, 250200, People's Republic of China
| | - X Q Niu
- ECG Room, Zhangqiu District People's Hospital, Jinan, 250200, People's Republic of China
| | - L Z Yin
- Health Management Center, Zhangqiu District People's Hospital, No. 1920 Huiquan Road, Jinan, 250200, People's Republic of China.
| |
Collapse
|
3
|
Lorza AMA, Ravi H, Philip RC, Galons JP, Trouard TP, Parra NA, Von Hoff DD, Read WL, Tibes R, Korn RL, Raghunand N. Dose-response assessment by quantitative MRI in a phase 1 clinical study of the anti-cancer vascular disrupting agent crolibulin. Sci Rep 2020; 10:14449. [PMID: 32879326 PMCID: PMC7468301 DOI: 10.1038/s41598-020-71246-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 02/08/2023] Open
Abstract
The vascular disrupting agent crolibulin binds to the colchicine binding site and produces anti-vascular and apoptotic effects. In a multisite phase 1 clinical study of crolibulin (NCT00423410), we measured treatment-induced changes in tumor perfusion and water diffusivity (ADC) using dynamic contrast-enhanced MRI (DCE-MRI) and diffusion-weighted MRI (DW-MRI), and computed correlates of crolibulin pharmacokinetics. 11 subjects with advanced solid tumors were imaged by MRI at baseline and 2–3 days post-crolibulin (13–24 mg/m2). ADC maps were computed from DW-MRI. Pre-contrast T1 maps were computed, co-registered with the DCE-MRI series, and maps of area-under-the-gadolinium-concentration-curve-at-90 s (AUC90s) and the Extended Tofts Model parameters ktrans, ve, and vp were calculated. There was a strong correlation between higher plasma drug \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${C}^{max}$$\end{document}Cmax and a linear combination of (1) reduction in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${AUC}_{90s}>15.8$$\end{document}AUC90s>15.8 mM s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${v}_{e}<0.3$$\end{document}ve<0.3. A higher plasma drug AUC was correlated with a linear combination of (1) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\text{ADC}} < 1.1 \times 10^{ - 3} \;{\text{mm}}^{2} /{\text{s}}$$\end{document}ADC<1.1×10-3mm2/s, and, (2) increase in tumor fraction with \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$v_{e}<0.3$$\end{document}ve<0.3. These findings are suggestive of cell swelling and decreased tumor perfusion 2–3 days post-treatment with crolibulin. The multivariable linear regression models reported here can inform crolibulin dosing in future clinical studies of crolibulin combined with cytotoxic or immune-oncology agents.
Collapse
Affiliation(s)
- Andres M Arias Lorza
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Harshan Ravi
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Rohit C Philip
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, 85721, USA
| | | | - Theodore P Trouard
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, 85724, USA
| | - Nestor A Parra
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA
| | - Daniel D Von Hoff
- Translational Genomics Research Institute (TGen), Phoenix, AZ, USA.,HonorHealth Clinical Research Institute, Scottsdale, AZ, USA
| | - William L Read
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Raoul Tibes
- Department of Internal Medicine II, Julius Maximilians University and Medical Center, Würzburg, Germany
| | | | - Natarajan Raghunand
- Department of Cancer Physiology, Moffitt Cancer Center, SRB-4, Tampa, FL, 33612, USA. .,Department of Oncologic Sciences, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
4
|
Safety and Tolerability of Anti-Angiogenic Protein Kinase Inhibitors and Vascular-Disrupting Agents in Cancer: Focus on Gastrointestinal Malignancies. Drug Saf 2019; 42:159-179. [PMID: 30649744 DOI: 10.1007/s40264-018-0776-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Angiogenesis is an essential process for tumor growth and metastasis. Inhibition of angiogenesis as an anticancer strategy has shown significant results in a plethora of tumors. Anti-angiogenic agents are currently part of many standard-of-care options for several metastatic gastrointestinal cancers. Bevacizumab, aflibercept, ramucirumab, and regorafenib have significantly improved both progression-free and overall survival in different lines of treatment in metastatic colorectal cancer. Second-line ramucirumab and third-line apatinib are effective anti-angiogenic treatments for patients with metastatic gastric cancer. Unfortunately, the anti-angiogenic strategy has major practical limitations: resistance inevitably develops through redundancy of signaling pathways and selection for subclonal populations adapted for hypoxic conditions. Anti-angiogenic agents may be more effective in combination therapies, with not only cytotoxics but also other emerging compounds in the anti-angiogenic class or in the separate class of the so-called vascular-disrupting agents. This review aims to provide an overview of the approved and "under development" anti-angiogenic compounds as well as the vascular-disrupting agents in the treatment of gastrointestinal cancers, focusing on the actual body of knowledge available on therapy challenges, pharmacodynamic and pharmacokinetic mechanisms, safety profiles, promising predictive biomarkers, and future perspectives.
Collapse
|
5
|
Gill JH, Rockley KL, De Santis C, Mohamed AK. Vascular Disrupting Agents in cancer treatment: Cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics. Pharmacol Ther 2019; 202:18-31. [PMID: 31173840 DOI: 10.1016/j.pharmthera.2019.06.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 05/30/2019] [Indexed: 02/08/2023]
Abstract
Destruction of the established tumour vasculature by a class of compound termed Vascular Disrupting Agents (VDAs) is showing considerable promise as a viable approach for the management of solid tumours. VDAs induce a rapid shutdown and collapse of tumour blood vessels, leading to ischaemia and consequent necrosis of the tumour mass. Their efficacy is hindered by the persistence of a viable rim of tumour cells, supported by the peripheral normal vasculature, necessitating their co-administration with additional chemotherapeutics for maximal therapeutic benefit. However, a major limitation for the use of many cancer therapeutics is the development of life-threatening cardiovascular toxicities, with significant consequences for treatment response and the patient's quality of life. The aim of this review is to outline VDAs as a cancer therapeutic approach and define the mechanistic basis of cardiovascular toxicities of current chemotherapeutics, with the overall objective of discussing whether VDA combinations with specific chemotherapeutic classes would be good or bad in terms of cardiovascular toxicity.
Collapse
Affiliation(s)
- Jason H Gill
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK; School of Pharmacy, Faculty of Medical Sciences, Newcastle University, UK.
| | - Kimberly L Rockley
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| | - Carol De Santis
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| | - Asma K Mohamed
- Northern Institute for Cancer Research (NICR), Faculty of Medical Sciences, Newcastle University, UK
| |
Collapse
|
6
|
El Bairi K, Amrani M, Afqir S. Starvation tactics using natural compounds for advanced cancers: pharmacodynamics, clinical efficacy, and predictive biomarkers. Cancer Med 2018; 7:2221-2246. [PMID: 29732738 PMCID: PMC6010871 DOI: 10.1002/cam4.1467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/21/2018] [Accepted: 02/28/2018] [Indexed: 02/05/2023] Open
Abstract
The high mortality associated with oncological diseases is mostly due to tumors in advanced stages, and their management is a major challenge in modern oncology. Angiogenesis is a defined hallmark of cancer and predisposes to metastatic invasion and dissemination and is therefore an important druggable target for cancer drug discovery. Recently, because of drug resistance and poor prognosis, new anticancer drugs from natural sources targeting tumor vessels have attracted more attention and have been used in several randomized and controlled clinical trials as therapeutic options. Here, we outline and discuss potential natural compounds as salvage treatment for advanced cancers from recent and ongoing clinical trials and real-world studies. We also discuss predictive biomarkers for patients' selection to optimize the use of these potential anticancer drugs.
Collapse
Affiliation(s)
- Khalid El Bairi
- Faculty of Medicine and PharmacyMohamed Ist UniversityOujdaMorocco
| | - Mariam Amrani
- Equipe de Recherche en Virologie et Onco‐biologieFaculty of MedicinePathology DepartmentNational Institute of OncologyUniversité Mohamed VRabatMorocco
| | - Said Afqir
- Department of Medical OncologyMohamed VI University HospitalOujdaMorocco
| |
Collapse
|