1
|
Cao S, Wang Y, Zhang Y, Ren J, Fan B, Deng Y, Yin W. Naringenin can Inhibit the Pyroptosis of Osteoblasts by Activating the Nrf2/HO-1 Signaling Pathway and Alleviate the Differentiation Disorder of Osteoblasts Caused by Microgravity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39506307 DOI: 10.1021/acs.jafc.4c05370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Naringenin (4,5,7-trihydroxyflavone, NAR) is an effective active ingredient in Rhizoma Drynariae, which has many biological functions, encompassing anti-inflammatory and -oxidant functions. Prior research has shown that NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasomes possessed a significant contribution to osteoporosis. However, the NAR impact on bone loss caused by microgravity remains unclear. Classical microgravity simulation methods were used to induce simulated microgravity (SMG) in mice and cells. Microcomputed tomography, immunohistochemical examination, and hematoxylin and eosin staining were implemented to ascertain alterations in bone microstructure and morphology in mice subsequent to NAR gavage. Cellular investigations were implemented encompassing quantitative real-time polymerase chain reaction, Western blotting, and immunofluorescence labeling to investigate the molecular mechanism behind NAR resistance to microgravity-induced bone loss. Our research has shown that NAR can significantly enhance the SMG-stimulated alterations in bone microstructure and morphology in mice, mainly by increasing the trabecular thickness, bone volume fraction, and trabecular number while increasing the bone trabecula number. Cell experiments also showed that SMG caused the activation of inflammatory corpuscles of NLRP3 and induced pyroptosis simultaneously, which can be confirmed by the upregulation of protein and mRNA expression levels such as those of NLRP3, cleaved caspase-1, gasdermin D, and apoptosis-associated speck-like protein. The occurrence of pyroptosis further led to the disorder of osteogenic differentiation, which showed that the osteopontin, Runt-related transcription factor 2, bone morphogenetic protein 2, and alkaline phosphatase expression levels were decreased. The intervention of NAR can activate the nuclear factor erythroid 2-related factor 2/heme oxygenase-1 (Nrf2/HO-1) pathway, reverse this phenomenon via controlling the reactive oxygen species generation in cells and correcting mitochondrial malfunction, weaken the pyroptosis of osteoblasts (OBs), and promote osteogenic differentiation. In summary, NAR could hinder the pyroptosis of OBs caused by SMG and promote osteogenic differentiation via activating the Nrf2/HO-1 pathway. This provides a unique view for inhibiting bone loss under weightlessness and confirms the NAR capacity in treating microgravity-stimulated bone loss, giving new ideas and methods for future space medicine development.
Collapse
Affiliation(s)
- Shuyan Cao
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yi Wang
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Yalong Zhang
- Department of Rehabilitation, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Jingyi Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Bingjie Fan
- Department of Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550000, China
| | - Ying Deng
- Department of Emergency, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| | - Wenzhe Yin
- Department of Orthopaedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, China
| |
Collapse
|
2
|
Jin X, Wang H, Liang X, Ru K, Deng X, Gao S, Qiu W, Huai Y, Zhang J, Lai L, Li F, Miao Z, Zhang W, Qian A. Calycosin prevents bone loss induced by hindlimb unloading. NPJ Microgravity 2022; 8:23. [PMID: 35794112 PMCID: PMC9259590 DOI: 10.1038/s41526-022-00210-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Bone loss induced by microgravity exposure seriously endangers the astronauts' health, but its countermeasures still have certain limitations. The study aims to find potential protective drugs for the prevention of the microgravity-induced bone loss. Here, we utilized the network pharmacology approach to discover a natural compound calycosin by constructing the compound-target interaction network and analyzing the topological characteristics of the network. Furthermore, the hind limb unloading (HLU) rats' model was conducted to investigate the potential effects of calycosin in the prevention of bone loss induced by microgravity. The results indicated that calycosin treatment group significantly increased the bone mineral density (BMD), ameliorated the microstructure of femoral trabecular bone, the thickness of cortical bone and the biomechanical properties of the bone in rats, compared that in the HLU group. The analysis of bone turnover markers in serum showed that both the bone formation markers and bone resorption markers decreased after calycosin treatment. Moreover, we found that bone remodeling-related cytokines in serum including IFN-γ, IL-6, IL-8, IL-12, IL-4, IL-10 and TNF-α were partly recovered after calycosin treatment compared with HLU group. In conclusion, calycosin partly recovered hind limb unloading-induced bone loss through the regulation of bone remodeling. These results provided the evidence that calycosin might play an important role in maintaining bone mass in HLU rats, indicating its promising application in the treatment of bone loss induced by microgravity.
Collapse
Affiliation(s)
- Xiang Jin
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Hong Wang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for toxicological and biological effects, Institute for Hygiene of Ordnance Industry, Xi'an, 710065, China
| | - Xuechao Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Xiaoni Deng
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Shuo Gao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wuxia Qiu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Ying Huai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jiaqi Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Linbin Lai
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Fan Li
- Hospital of Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Zhiping Miao
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
- NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, China.
| |
Collapse
|
3
|
Chen WW, Lin CW, Huang WI, Chao PH, Gau CS, Hsiao FY. Using real-world evidence for pharmacovigilance and drug safety-related decision making by a resource-limited health authority: 10 years of experience in Taiwan. Pharmacoepidemiol Drug Saf 2020; 29:1402-1413. [PMID: 32894792 DOI: 10.1002/pds.5084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 05/20/2020] [Accepted: 07/08/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE Real-world evidence has become increasingly relevant in regulatory decision making. Compared to large regulatory bodies, the national pharmacovigilance system in Taiwan is still under development, and the aim of this study is to demonstrate how a resource-limited health authority utilizes real-world evidence in decision making. METHODS We described different sources of real-world data available in Taiwan and illustrated the structural framework that integrates real-world evidence into Taiwan's national pharmacovigilance system. Additionally, we reviewed real-world studies conducted in the past 10 years and provided examples to show how these studies influenced drug safety-related decision making in Taiwan. RESULTS During the past 10 years, real-world evidence used when making drug safety-related regulatory decisions in Taiwan was mainly generated from nationwide claims databases, but other sources of real-world data, such as national registries and large electronic hospital databases, also became available recently. Different types of real-world evidence, including drug utilization studies, risk evaluation studies, and risk minimization measure evaluation studies, have been used to support regulatory decisions in Taiwan. CONCLUSIONS Through collaborations between the government and academics, Taiwan has started to integrate real-world evidence into the national pharmacovigilance system. However, future efforts, including linkages between different sources of real-world data and improvements in procedural and methodological practices, are needed to generate more regulatory-quality real-world evidence.
Collapse
Affiliation(s)
| | - Chih-Wan Lin
- Taiwan Drug Relief Foundation, Taipei, Taiwan.,Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wei-I Huang
- Taiwan Drug Relief Foundation, Taipei, Taiwan
| | - Pi-Hui Chao
- Taiwan Drug Relief Foundation, Taipei, Taiwan
| | - Churn-Shiouh Gau
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Center for Drug Evaluation, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Fei-Yuan Hsiao
- Graduate Institute of Clinical Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pharmacy, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Peng M, Qiang L, Xu Y, Li C, Li T, Wang J. Inhibition of JNK and activation of the AMPK-Nrf2 axis by corosolic acid suppress osteolysis and oxidative stress. Nitric Oxide 2018; 82:12-24. [PMID: 30453049 DOI: 10.1016/j.niox.2018.11.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/06/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
Abstract
The intracellular reactive oxygen species contribute to RANKL-induced osteoclastogenesis and osteolysis. Nuclear factor-erythroid 2-related factor 2 (Nrf2), a redox-sensitive transcription factor, is critical in the cellular defense against oxidative stress by induction of antioxidants and cytoprotective enzymes. In the current study, it was first demonstrated that RANKL-induced osteoclastogenesis and hydroxylapatite resorption were suppressed by Corosolic acid (CA) via inhibiting p-JNK and activating p-AMPK. Meanwhile, p-65, p-38, Akt, and GSK-3β were partly inhibited during the treatment of CA. Osteoclastogenesis related genes, including NFATc1, c-fos, cathepsin K, and CTR were down-regulated by CA as well. Furthermore, the intracellular oxidative stress of CA-treated osteoclasts was dramatically decreased and Nrf2 was translocated into the nucleus to activate antioxidants including HO-1, NQO-1, and GCLC by CA. The LPS-induced mice calvarial osteolysis model was established for the in vivo investigation. Micro-CT morphometric analysis revealed that the treatment of CA restored LPS-induced bone loss and formation of osteoclasts. Besides, p-p65 and p-JNK were activated in the LPS group but inhibited by CA in vivo. The treatment of CA also activated p-AMPK during its attenuating LPS-induced osteolysis. Conclusively, CA effectively protects against LPS-induced osteolysis by suppressing osteoclastogenesis and oxidative stress through the inhibition of the JNK and activation of the AMPK-Nrf2 axis.
Collapse
Affiliation(s)
- Mingzheng Peng
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Lei Qiang
- Southwest Jiaotong University College of Medicine, 610031, No.111, North Section, 2nd Ring Road, Chengdu, Sichuan, China
| | - Yan Xu
- Southwest Jiaotong University College of Medicine, 610031, No.111, North Section, 2nd Ring Road, Chengdu, Sichuan, China
| | - Cuidi Li
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, 1804 Huashan Rd, Shanghai, 200030, China
| | - Tao Li
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China
| | - Jinwu Wang
- Shanghai Key Laboratory of Orthopaedic Implant, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Rd, Shanghai, 200011, China.
| |
Collapse
|
6
|
Li Z, Chen C, Zhu X, Li Y, Yu R, Xu W. Glycyrrhizin Suppresses RANKL-Induced Osteoclastogenesis and Oxidative Stress Through Inhibiting NF-κB and MAPK and Activating AMPK/Nrf2. Calcif Tissue Int 2018; 103:324-337. [PMID: 29721581 DOI: 10.1007/s00223-018-0425-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/02/2018] [Indexed: 12/21/2022]
Abstract
The treatment for osteoporosis involves inhibiting bone resorption and osteoclastogenesis. Glycyrrhizin (GLY) is a triterpenoid saponin glycoside known to be as the most medically efficacious component of the licorice plant. It has strong anti-inflammatory, antioxidant, and antitumor properties. We investigated the effect of GLY on osteoclastogenesis, bone resorption, and intracellular oxidative stress and its molecular mechanisms. In vitro osteoclastogenesis assays were performed using bone marrow monocytes with and without glycyrrhizin. We also evaluated the effects of glycyrrhizin on the secretion of TNF-α, IL-1β, and IL-6 in LPS-stimulated RAW 264.7 cells using ELISA. The effects of glycyrrhizin on the expression of osteoclast-related genes, such as Nfatc1, c-fos, Trap, and cathepsin K (CK), were investigated by RT-PCR. Intracellular reactive oxygen species (ROS) were detected in receptor activator of nuclear factor kappa-Β ligand (RANKL)-stimulated osteoclasts in the presence and absence of glycyrrhizin. During the inhibition of osteoclastogenesis by glycyrrhizin, phosphorylation of AMPK, Nrf2, NF-κB, and MAPK was analyzed using western blotting. Our results showed that glycyrrhizin significantly inhibited RANKL-induced osteoclastogenesis, downregulated the expression of NFATc1, c-fos, TRAP, CK, DC-STAMP, and OSCAR, and inhibited p65, p38, and JNK. Glycyrrhizin was found to significantly decrease the secretion of inflammatory cytokines (TNF-α, IL-1β, and IL-6). Additionally, glycyrrhizin reduced the formation of ROS in osteoclasts by inducing AMPK phosphorylation and nuclear transfer of NRF2, resulting in an upregulation of antioxidant enzymes, such as HO-1, NQO-1, and GCLC. In summary, we found that glycyrrhizin inhibited RANKL-induced osteoclastogenesis. It was also indicated that glycyrrhizin could reduce oxidative stress by inhibiting the MAPK and NF-κB pathways and activating the AMPK/NRF2 signaling. Therefore, glycyrrhizin may be used as an effective therapeutic agent against osteoporosis and bone resorption.
Collapse
Affiliation(s)
- Zhikun Li
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China
| | - Chao Chen
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China
| | - Xiaodong Zhu
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China
| | - Yifan Li
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China
| | - Ronghua Yu
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China
| | - Wei Xu
- Department of Spine Surgery, TongRen Hospital, School of Medicine, Shanghai Jiao Tong University, 1111 Xianxia Road, Shanghai, 200336, People's Republic of China.
| |
Collapse
|