1
|
Allison AZT, Conway CJ, Goldberg AR. Weather influences survival probability in two coexisting mammals directly and indirectly via competitive asymmetry. Ecology 2024; 105:e4229. [PMID: 38071700 DOI: 10.1002/ecy.4229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/27/2023] [Accepted: 10/19/2023] [Indexed: 12/22/2023]
Abstract
Ecologists have studied the role of interspecific competition in structuring ecological communities for decades. Differential weather effects on animal competitors may be a particularly important factor contributing to the outcome of competitive interactions, though few studies have tested this hypothesis in free-ranging animals. Specifically, weather might influence competitive dynamics by altering competitor densities and/or per-capita competitive effects on demographic vital rates. We used a 9-year data set of marked individuals to test for direct and interactive effects of weather and competitor density on survival probability in two coexisting mammalian congeners: Columbian ground squirrels (Urocitellus columbianus) and northern Idaho ground squirrels (Urocitellus brunneus). Ambient temperature and precipitation influenced survival probability in both species, but the effects of weather differed between the two species. Moreover, density of the larger Columbian ground squirrel negatively impacted survival probability in the smaller northern Idaho ground squirrel (but not vice versa), and the strength of the negative effect was exacerbated by precipitation. That is, cooler, wetter conditions benefited the larger competitor to the detriment of the smaller species. Our results suggest weather-driven environmental variation influences the competitive equilibrium between ecologically similar mammals of differential body size. Whether future climate change leads to the competitive exclusion of either species will likely depend on the mechanism(s) explaining the coexistence of these competing species. Divergent body size and, hence, differences in thermal tolerance and giving up densities offer potential explanations for the weather-dependent competitive asymmetry we documented, especially if the larger species competitively excludes the smaller species from habitat patches of shared preference via interference.
Collapse
Affiliation(s)
- Austin Z T Allison
- Department of Fish and Wildlife Sciences, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow, Idaho, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow, Idaho, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, Idaho Cooperative Fish and Wildlife Research Unit, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
2
|
Allison AZT, Conway CJ, Morris AE, Goldberg AR, Lohr K, Richards R, Almack JA. Hit Snooze: An Imperiled Hibernator Assesses Spring Snow Conditions to Decide Whether to Terminate Hibernation or Reenter Torpor. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:53-63. [PMID: 38717368 DOI: 10.1086/729775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.
Collapse
|
3
|
Starkloff NC, Civitello DJ. Cascading impacts of host seasonal adaptation on parasitism. Trends Parasitol 2022; 38:942-949. [PMID: 36088213 PMCID: PMC9588794 DOI: 10.1016/j.pt.2022.08.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/13/2023]
Abstract
The persistence of parasite populations through harsh seasonal bouts is often critical to circannual disease outbreaks. Parasites have a diverse repertoire of phenotypes for persistence, ranging from transitioning to a different life stage better suited to within-host dormancy to utilizing weather-hardy structures external to hosts. While these adaptive traits allow parasite species to survive through harsh seasons, it is often at survival rates that threaten population persistence. We argue that these periods of parasite (and vector) population busts could be ideal targets for disease intervention. As climate change portends abbreviated host dormancy and extended transmission periods in many host-parasite systems, it is essential to identify novel pathways to shore up current disease-intervention strategies.
Collapse
|
4
|
Mas M, Flaquer C, Puig-Montserrat X, Porres X, Rebelo H, López-Baucells A. Winter bat activity: The role of wetlands as food and drinking reservoirs under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154403. [PMID: 35276147 DOI: 10.1016/j.scitotenv.2022.154403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Bat arousals during hibernation are related to rises in environmental temperature, body water loss and increasing body heat. Therefore, bats either hibernate in cold places or migrate to areas with mild winters to find water and insects to intake. During winter, insects are relatively abundant in wetlands with mild climates when low temperatures hamper insect activity in other places. However, the role of wetlands to sustain winter bat activity has never been fully assessed. To further understand bat behaviour during hibernation, we evaluated how the weather influenced hibernating bats, assessed the temperature threshold that increased bat arousals, and discussed how winter temperatures could affect bat activity under future climate change scenarios. The effects of weather and landscape composition on winter bat activity were assessed by acoustically sampling four different habitats (wetlands, rice paddies, urban areas and salt marshes) in the Ebro Delta (Spain). Our results show one of the highest winter bat foraging activities ever reported, with significantly higher activity in wetlands and urban areas. Most importantly, we found a substantial increase in bat activity triggered when nocturnal temperatures reached ca. 11 °C. By contrasting historical weather datasets, we show that, since the 1940s, there has been an increase by ca. 1.5 °C in winter maximum temperatures and a 180% increase in the number of nights with mean temperatures above 11 °C in the Ebro Delta. Temperature trends suggest that in 60-80 years, winter months will reach average temperatures of 11 °C (except maybe in January), which suggest a potential coming interruption or disappearance of bat hibernation in coastal Mediterranean habitats. This study highlights the significant role of wetlands in bat conservation under a climate change scenario as these humid areas represent one of the few remaining winter foraging habitats.
Collapse
Affiliation(s)
- Maria Mas
- BiBio (Biodiversity and Bioindicators Research Group), Natural Sciences Museum of Granollers, Av. Francesc Macia, 51, 08402 Granollers, Catalonia, Spain; CREAF, Universitat Autònoma de Barcelona, Cerdanyola del Valles, 08193, Catalonia, Spain.
| | - Carles Flaquer
- BiBio (Biodiversity and Bioindicators Research Group), Natural Sciences Museum of Granollers, Av. Francesc Macia, 51, 08402 Granollers, Catalonia, Spain
| | - Xavier Puig-Montserrat
- BiBio (Biodiversity and Bioindicators Research Group), Natural Sciences Museum of Granollers, Av. Francesc Macia, 51, 08402 Granollers, Catalonia, Spain; Galanthus Association, Celrà 17460, Catalonia, Spain
| | - Xavier Porres
- Ebro Delta Natural Park, Generalitat de Catalunya, Deltebre, 43580, Catalonia, Spain
| | - Hugo Rebelo
- CIBIO-InBIO, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal; CIBIO-InBIO, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisboa, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal
| | - Adrià López-Baucells
- BiBio (Biodiversity and Bioindicators Research Group), Natural Sciences Museum of Granollers, Av. Francesc Macia, 51, 08402 Granollers, Catalonia, Spain
| |
Collapse
|
5
|
Williams CT, Chmura HE, Deal CK, Wilsterman K. Sex-differences in Phenology: A Tinbergian Perspective. Integr Comp Biol 2022; 62:980-997. [PMID: 35587379 DOI: 10.1093/icb/icac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/23/2022] [Indexed: 11/13/2022] Open
Abstract
Shifts in the timing of cyclic seasonal life-history events are among the most commonly reported responses to climate change, with differences in response rates among interacting species leading to phenological mismatches. Within a species, however, males and females can also exhibit differential sensitivity to environmental cues and may therefore differ in their responsiveness to climate change, potentially leading to phenological mismatches between the sexes. This occurs because males differ from females in when and how energy is allocated to reproduction, resulting in marked sex-differences in life-history timing across the annual cycle. In this review, we take a Tinbergian perspective and examine sex differences in timing of vertebrates from adaptive, ontogenetic, mechanistic, and phylogenetic viewpoints with the goal of informing and motivating more integrative research on sexually dimorphic phenologies. We argue that sexual and natural selection lead to sex-differences in life-history-timing and that understanding the ecological and evolutionary drivers of these differences is critical for connecting climate-driven phenological shifts to population resilience. Ontogeny may influence how and when sex differences in life-history timing arise because the early-life environment can profoundly affect developmental trajectory, rates of reproductive maturation, and seasonal timing. The molecular mechanisms underlying these organismal traits are relevant to identifying the diversity and genetic basis of population- and species-level responses to climate change, and promisingly, the molecular basis of phenology is becoming increasingly well-understood. However, because most studies focus on a single sex, the causes of sex-differences in phenology critical to population resilience often remain unclear. New sequencing tools and analyses informed by phylogeny may help generate hypotheses about mechanism as well as insight into the general "evolvability" of sex differences across phylogenetic scales, especially as trait and genome resources grow. We recommend that greater attention be placed on determining sex-differences in timing mechanisms and monitoring climate change responses in both sexes, and we discuss how new tools may provide key insights into sex-differences in phenology from all four Tinbergian domains.
Collapse
Affiliation(s)
- Cory T Williams
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Helen E Chmura
- Institute of Arctic Biology, University of Alaska Fairbanks, 2140 Koyukuk Drive, Fairbanks, AK 99775, USA.,Rocky Mountain Research Station, United States Forest Service, 800 E. Beckwith Ave, Missoula, MT 59801, USA
| | - Cole K Deal
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| | - Kathryn Wilsterman
- Department of Biology, Colorado State University, 1878 Campus Delivery Fort Collins, CO 80523, USA
| |
Collapse
|
6
|
Tamian A, Viblanc VA, Dobson FS, Neuhaus P, Hammer TL, Nesterova AP, Raveh S, Skibiel AL, Broussard D, Manno TG, Rajamani N, Saraux C. Integrating microclimatic variation in phenological responses to climate change: A 28‐year study in a hibernating mammal. Ecosphere 2022. [DOI: 10.1002/ecs2.4059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Anouch Tamian
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - Vincent A. Viblanc
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| | - F. Stephen Dobson
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences Auburn University Auburn Alabama USA
| | - Peter Neuhaus
- Department of Biological Sciences University of Calgary Calgary Canada
| | - Tracey L. Hammer
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
- Department of Biological Sciences University of Calgary Calgary Canada
| | | | - Shirley Raveh
- Institute of Biodiversity, Animal Health and Comparative Medicine University of Glasgow Glasgow UK
| | - Amy L. Skibiel
- Department of Animal, Veterinary and Food Sciences University of Idaho Moscow Idaho USA
| | - David Broussard
- Department of Biology Lycoming College Williamsport Pennsylvania USA
| | - Theodore G. Manno
- Science Department Catalina Foothills High School Tucson Arizona USA
| | - Nandini Rajamani
- Indian Institute of Science Education and Research Tirupati Andhra Pradesh India
| | - Claire Saraux
- Département Ecologie, Physiologie et Ethologie Institut Pluridisciplinaire Hubert Curien, CNRS Strasbourg France
| |
Collapse
|
7
|
Auteri GG. A conceptual framework to integrate cold-survival strategies: torpor, resistance and seasonal migration. Biol Lett 2022; 18:20220050. [PMID: 35506240 PMCID: PMC9065958 DOI: 10.1098/rsbl.2022.0050] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Freezing temperatures are inherently challenging for life, which is water based. How species cope with these conditions fundamentally shapes ecological and evolutionary processes. Despite this, there is no comprehensive conceptual framework for cold-survival strategies-seasonal migration, cold resistance and torpor. Here, I propose a framework with four components for conceptualizing and quantifying cold-survival strategies. Cold-survival strategies are (i) collectively encompassed by the proposed framework, and that this full breadth of strategies should be considered in focal species or systems (comprehensive consideration). These strategies also (ii) exist on a spectrum, such that species can exhibit partial use of strategies, (iii) are non-exclusive, such that some species use multiple strategies concurrently (combined use) and (iv) should collectively vary inversely and proportionally with one another when controlling for the external environment (e.g. when considering species that occur in sympatry in their summer range), such that use of one strategy reduces, collectively, the use of others (proportional use). This framework is relevant to understanding fundamental patterns and processes in evolution, ecology, physiology and conservation biology.
Collapse
Affiliation(s)
- Giorgia G Auteri
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
European Ground Squirrels at the Edge: Current Distribution Status and Anticipated Impact of Climate on Europe’s Southernmost Population. LAND 2022. [DOI: 10.3390/land11020301] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The European ground squirrel (Spermophilus citellus) is an endangered semifossorial small mammal of grassland/agricultural ecosystems. In the last few decades, the species’ population has declined throughout its range in Europe. The Greek populations represent the southernmost limit of the species’ range and are notably small, scattered, and located mainly in human-modified areas. The goal of the present research is to understand the environmental and anthropogenic variables associated with its distribution in the Mediterranean habitats, assess possible drivers of observed local extinctions, and propose conservation and land-use management actions in light of near-future climate change scenarios. We used presence records since 2000 across all known populations (107 colonies) and maximum entropy conditional probability models (MaxEnt) to calculate both the habitat suitability (bioclimatic variables) and habitat availability (anthropogenic/land-use variables) within the European ground squirrel’s historical range in northern Greece. We report a projected 39% to 94.3% decrease in habitat suitability by 2040–2060 due to climate change. Based on our findings, we provide guidance by proposing nascent conservation actions to protect the few existing colonies in Greece via improved land management practices and identify in situ climate refugia that could be prioritized as sites for future reintroductions.
Collapse
|
9
|
Daily foraging activity of an imperiled ground squirrel: effects of hibernation, thermal environment, body condition, and conspecific density. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03142-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Barbosa S, Andrews KR, Goldberg AR, Gour DS, Hohenlohe PA, Conway CJ, Waits LP. The role of neutral and adaptive genomic variation in population diversification and speciation in two ground squirrel species of conservation concern. Mol Ecol 2021; 30:4673-4694. [PMID: 34324748 DOI: 10.1111/mec.16096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/10/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Understanding the neutral (demographic) and adaptive processes leading to the differentiation of species and populations is a critical component of evolutionary and conservation biology. In this context, recently diverged taxa represent a unique opportunity to study the process of genetic differentiation. Northern and southern Idaho ground squirrels (Urocitellus brunneus - NIDGS, and U. endemicus - SIDGS, respectively) are a recently diverged pair of sister species that have undergone dramatic declines in the last 50 years and are currently found in metapopulations across restricted spatial areas with distinct environmental pressures. Here we genotyped single-nucleotide polymorphisms (SNPs) from buccal swabs with restriction site-associated DNA sequencing (RADseq). With these data we evaluated neutral genetic structure at both theinter- and intraspecific level, and identified putatively adaptive SNPs using population structure outlier detection and genotype-environment association (GEA) analyses. At the interspecific level, we detected a clear separation between NIDGS and SIDGS, and evidence for adaptive differentiation putatively linked to torpor patterns. At the intraspecific level, we found evidence of both neutral and adaptive differentiation. For NIDGS, elevation appears to be the main driver of adaptive differentiation, while neutral variation patterns match and expand information on the low connectivity between some populations identified in previous studies using microsatellite markers. For SIDGS, neutral substructure generally reflected natural geographic barriers, while adaptive variation reflected differences in land cover and temperature, as well as elevation. These results clearly highlight the roles of neutral and adaptive processes for understanding the complexity of the processes leading to species and population differentiation, which can have important conservation implications in susceptible and threatened species.
Collapse
Affiliation(s)
- Soraia Barbosa
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Kimberly R Andrews
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA
| | - Amanda R Goldberg
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Digpal S Gour
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| | - Paul A Hohenlohe
- University of Idaho, Institute for Bioinformatics and Evolutionary Studies (IBEST), Moscow, ID, 83844-1136, USA.,Department of Biological Sciences, College of Science, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-3051, USA
| | - Courtney J Conway
- U.S. Geological Survey, Idaho Cooperative Fish & Wildlife Research Unit, Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID, 83844-1141, USA
| | - Lisette P Waits
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, 875 Perimeter Drive, Moscow, ID, 83844-1136, USA
| |
Collapse
|