1
|
Fetherston SC, Lonsinger RC, Perkins LB, Lehman CP, Adams JR, Waits LP. Genetic analysis of harvest samples reveals population structure in a highly mobile generalist carnivore. Ecol Evol 2024; 14:e11411. [PMID: 38799390 PMCID: PMC11116766 DOI: 10.1002/ece3.11411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/29/2024] Open
Abstract
Delineating wildlife population boundaries is important for effective population monitoring and management. The bobcat (Lynx rufus) is a highly mobile generalist carnivore that is ecologically and economically important. We sampled 1225 bobcats harvested in South Dakota, USA (2014-2019), of which 878 were retained to assess genetic diversity and infer population genetic structure using 17 microsatellite loci. We assigned individuals to genetic clusters (K) using spatial and nonspatial Bayesian clustering algorithms and quantified differentiation (F ST and G ST ″ ) among clusters. We found support for population genetic structure at K = 2 and K = 4, with pairwise F ST and G ST ″ values indicating weak to moderate differentiation, respectively, among clusters. For K = 2, eastern and western clusters aligned closely with historical bobcat management units and were consistent with a longitudinal suture zone for bobcats previously identified in the Great Plains. We did not observe patterns of population genetic structure aligning with major rivers or highways. Genetic divergence observed at K = 4 aligned roughly with ecoregion breaks and may be associated with environmental gradients, but additional sampling with more precise locational data may be necessary to validate these patterns. Our findings reveal that cryptic population structure may occur in highly mobile and broadly distributed generalist carnivores, highlighting the importance of considering population structure when establishing population monitoring programs or harvest regulations. Our study further demonstrates that for elusive furbearers, harvest can provide an efficient, broad-scale sampling approach for genetic population assessments.
Collapse
Affiliation(s)
- Stuart C. Fetherston
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
- Present address:
U.S. Fish and Wildlife Service, Texas Fish and Wildlife Conservation OfficeSan MarcosTexasUSA
| | - Robert C. Lonsinger
- U.S. Geological Survey, Oklahoma Cooperative Fish and Wildlife Research UnitOklahoma State UniversityStillwaterOklahomaUSA
| | - Lora B. Perkins
- Natural Resource ManagementSouth Dakota State UniversityBrookingsSouth DakotaUSA
| | - Chadwick P. Lehman
- South Dakota Department of Game, Fish and Parks, Custer State ParkCusterSouth DakotaUSA
| | | | | |
Collapse
|
2
|
Gao H, Li N, Huang Y, Qiao F, Li J, Li Z, Li Y, Wang Z, Teng L, Liu Z. Taxonomic status of Chinese blue sheep (Pseudois nayaur): new evidence of a distinct subspecies. Integr Zool 2020; 15:202-212. [PMID: 31773863 DOI: 10.1111/1749-4877.12422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The blue sheep is an endemic species to the Qinghai-Tibet Plateau and surrounding regions. It has been regarded as having 2 subspecies: Pseudois nayaur nayaur and P. n. szechuanensis. However, such a classification remains controversial. Herein, we analyze 10 microsatellite loci and part of the mitochondrial control region for clarification in such taxonomic debates. We use samples from 168 individuals from 6 geographic populations covering almost all the distribution areas of the species in China to carry out comparisons. Phylogenetic trees derived from both the microsatellite and mitochondrial markers combined with the discriminant analysis of principal components (DAPC) and the STRUCTURE analysis reveal that the individuals in the Helan Mountains are well grouped with a distinct evolutionary lineage and are significantly different from the other populations of P. n. szechuanensis according to Fst values, implying that this isolated population should be categorized as a valid subspecies; namely, Pseudois nayaur alashanicus. The isolation-by-distance (IBD) analysis shows a significant positive relationship between genetic and geographical distances among the populations.
Collapse
Affiliation(s)
- Hui Gao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Nannan Li
- Forestry Science and Technology Research Institute of Greater Hinggan in Inner Mongolia, Yakeshi, China
| | - Yongjie Huang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Fujie Qiao
- School of Life Sciences, Lvliang Univiersity, Lvliang, China
| | - Junle Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zongzhi Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yanxiang Li
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Zhenghuan Wang
- School of Life Sciences, East China Normal University, Shanghai, China
| | - Liwei Teng
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| | - Zhensheng Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China.,Key Laboratory of Conservation Biology, National Forestry and Grassland Administration, Harbin, China
| |
Collapse
|
3
|
Menchaca A, Rossi NA, Froidevaux J, Dias-Freedman I, Caragiulo A, Wultsch C, Harmsen B, Foster R, de la Torre JA, Medellin RA, Rabinowitz S, Amato G. Population genetic structure and habitat connectivity for jaguar (Panthera onca) conservation in Central Belize. BMC Genet 2019; 20:100. [PMID: 31881935 PMCID: PMC6933898 DOI: 10.1186/s12863-019-0801-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/15/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Connectivity among jaguar (Panthera onca) populations will ensure natural gene flow and the long-term survival of the species throughout its range. Jaguar conservation efforts have focused primarily on connecting suitable habitat in a broad-scale. Accelerated habitat reduction, human-wildlife conflict, limited funding, and the complexity of jaguar behaviour have proven challenging to maintain connectivity between populations effectively. Here, we used non-invasive genetic sampling and individual-based conservation genetic analyses to assess genetic diversity and levels of genetic connectivity between individuals in the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We used expert knowledge and scientific literature to develop models of landscape permeability based on circuit theory with fine-scale landscape features as ecosystem types, distance to human settlements and roads to predict the most probable jaguar movement across central Belize. RESULTS We used 12 highly polymorphic microsatellite loci to identify 50 individual jaguars. We detected high levels of genetic diversity across loci (HE = 0.61, HO = 0.55, and NA = 9.33). Using Bayesian clustering and multivariate models to assess gene flow and genetic structure, we identified one single group of jaguars (K = 1). We identified critical areas for jaguar movement that fall outside the boundaries of current protected areas in central Belize. We detected two main areas of high landscape permeability in a stretch of approximately 18 km between Sittee River Forest Reserve and Manatee Forest Reserve that may increase functional connectivity and facilitate jaguar dispersal from and to Cockscomb Basin Wildlife Sanctuary. Our analysis provides important insights on fine-scale genetic and landscape connectivity of jaguars in central Belize, an area of conservation concern. CONCLUSIONS The results of our study demonstrate high levels of relatively recent gene flow for jaguars between two study sites in central Belize. Our landscape analysis detected corridors of expected jaguar movement between the Cockscomb Basin Wildlife Sanctuary and the Maya Forest Corridor. We highlight the importance of maintaining already established corridors and consolidating new areas that further promote jaguar movement across suitable habitat beyond the boundaries of currently protected areas. Continued conservation efforts within identified corridors will further maintain and increase genetic connectivity in central Belize.
Collapse
Affiliation(s)
- Angelica Menchaca
- School of Biological Sciences, the University of Bristol, Bristol, UK.
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA.
| | - Natalia A Rossi
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA
- The Wildlife Conservation Society, New York City, USA
| | - Jeremy Froidevaux
- School of Biological Sciences, the University of Bristol, Bristol, UK
| | | | - Anthony Caragiulo
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA
| | - Claudia Wultsch
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA
- City University of New York, New York City, USA
| | - Bart Harmsen
- Panthera, New York City, USA
- Environmental Research Institute, University of Belize, Belmopan, Belize
- Southampton University, Southampton, UK
| | - Rebecca Foster
- Panthera, New York City, USA
- Southampton University, Southampton, UK
| | - J Antonio de la Torre
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Semenyih, Malaysia
| | - Rodrigo A Medellin
- Instituto de Ecologia, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Salisa Rabinowitz
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA
| | - George Amato
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York City, USA.
| |
Collapse
|
4
|
Flores‐Manzanero A, Luna‐Bárcenas MA, Dyer RJ, Vázquez‐Domínguez E. Functional connectivity and home range inferred at a microgeographic landscape genetics scale in a desert-dwelling rodent. Ecol Evol 2019; 9:437-453. [PMID: 30680126 PMCID: PMC6342108 DOI: 10.1002/ece3.4762] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/08/2018] [Accepted: 11/12/2018] [Indexed: 11/24/2022] Open
Abstract
Gene flow in animals is limited or facilitated by different features within the landscape matrix they inhabit. The landscape representation in landscape genetics (LG) is traditionally modeled as resistance surfaces (RS), where novel optimization approaches are needed for assigning resistance values that adequately avoid subjectivity. Also, desert ecosystems and mammals are scarcely represented in LG studies. We addressed these issues by evaluating, at a microgeographic scale, the effect of landscape features on functional connectivity of the desert-dwelling Dipodomys merriami. We characterized genetic diversity and structure with microsatellites loci, estimated home ranges and movement of individuals using telemetry-one of the first with rodents, generated a set of individual and composite environmental surfaces based on hypotheses of variables influencing movement, and assessed how these variables relate to individual-based gene flow. Genetic diversity and structure results evidenced a family-induced pattern driven by first-order-related individuals, notably determining landscape genetic inferences. The vegetation cover and soil resistance optimized surface (NDVI) were the best-supported model and a significant predictor of individual genetic distance, followed by humidity and NDVI+humidity. Based on an accurate definition of thematic resolution, we also showed that vegetation is better represented as continuously (vs. categorically) distributed. Hence, with a nonsubjective optimization framework for RS and telemetry, we were able to describe that vegetation cover, soil texture, and climatic variables influence D. merriami's functional connectivity at a microgeographic scale, patterns we could further explain based on the home range, habitat use, and activity observed between sexes. We describe the relationship between environmental features and some aspects of D. merriami's behavior and physiology.
Collapse
Affiliation(s)
- Alejandro Flores‐Manzanero
- Departamento de Ecología de la Biodiversidad, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Madisson A. Luna‐Bárcenas
- Departamento de Ecología de la Biodiversidad, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| | - Rodney J. Dyer
- Department of Biology and Center for Environmental StudiesVirginia Commonwealth UniversityRichmondVirginia
| | - Ella Vázquez‐Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de EcologíaUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMéxico
| |
Collapse
|
5
|
Termignoni-García F, Jaramillo-Correa JP, Chablé-Santos J, Liu M, Shultz AJ, Edwards SV, Escalante-Pliego P. Genomic footprints of adaptation in a cooperatively breeding tropical bird across a vegetation gradient. Mol Ecol 2017; 26:4483-4496. [DOI: 10.1111/mec.14224] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 05/06/2017] [Accepted: 06/12/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Flavia Termignoni-García
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan P. Jaramillo-Correa
- Department of Evolutionary Ecology; Institute of Ecology; Universidad Nacional Autónoma de México; CdMx México
| | - Juan Chablé-Santos
- Department of Zoology; Facultad de Medicina Veterinaria y Zootecnia; Universidad Autónoma de Yucatán; Yucatán México
| | - Mark Liu
- Biodiversity Research Center; Academia Sinica; Taipei Nankang Taiwan
| | - Allison J. Shultz
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology (OEB); Harvard University; Cambridge MA USA
| | - Patricia Escalante-Pliego
- Department of Zoology; National Collection of Birds (CNAV); Institute of Biology; Universidad Nacional Autónoma de México; CdMx México
| |
Collapse
|
6
|
Kierepka EM, Latch EK. High gene flow in the American badger overrides habitat preferences and limits broadscale genetic structure. Mol Ecol 2016; 25:6055-6076. [PMID: 27862522 DOI: 10.1111/mec.13915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023]
Abstract
Habitat associations are a function of habitat preferences and dispersal capabilities, both of which can influence how species responded to Quaternary climatic changes and contemporary habitat heterogeneity. Predicting resultant genetic structure is not always straightforward, especially in species where high dispersal potential and habitat preferences yield opposing predictions. The American badger has high dispersal capabilities that predict widespread panmixia, but avoids closed-canopy forests and clay soils, which could restrict gene flow and create ecologically based population genetic structure. We used mitochondrial sequence and microsatellite data sets to characterize how these opposing forces contribute to genetic structure in badgers at a continent-wide scale. Our data revealed an overall lack of ecologically based population genetic structure, suggesting that high dispersal capabilities were sufficiently realized to overcome most habitat-based genetic structure. At a broadscale, badger gene flow is limited only by geographic distance (isolation by distance) and large water barriers (Lake Michigan and the Mississippi River). The absence of genetic structure in a species with strong avoidance of unsuitable habitats advances our understanding of when and how genetic structure emerges in widespread, highly mobile species.
Collapse
Affiliation(s)
- E M Kierepka
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - E K Latch
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| |
Collapse
|