1
|
Douglas MR, Mussmann SM, Chafin TK, Anthonysamy WJB, Davis MA, Mulligan MP, Schooley RL, Louis W, Douglas ME. Population connectivity in voles (Microtus sp.) as a gauge for tall grass prairie restoration in midwestern North America. PLoS One 2021; 16:e0260344. [PMID: 34882713 PMCID: PMC8659414 DOI: 10.1371/journal.pone.0260344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/08/2021] [Indexed: 11/19/2022] Open
Abstract
Ecological restoration can promote biodiversity conservation in anthropogenically fragmented habitats, but effectiveness of these management efforts need to be statistically validated to determine ’success.’ One such approach is to gauge the extent of recolonization as a measure of landscape permeability and, in turn, population connectivity. In this context, we estimated dispersal and population connectivity in prairie vole (Microtus ochrogaster; N = 231) and meadow vole (M. pennsylvanicus; N = 83) within five tall-grass prairie restoration sites embedded within the agricultural matrix of midwestern North America. We predicted that vole dispersal would be constrained by the extent of agricultural land surrounding restored habitat patches, spatially isolating vole populations and resulting in significant genetic structure. We first employed genetic assignment tests based on 15 microsatellite DNA loci to validate field-derived species-designations, then tested reclassified samples with multivariate and Bayesian clustering to assay for spatial and temporal genetic structure. Population connectivity was further evaluated by calculating pairwise FST, then potential demographic effects explored by computing migration rates, effective population size (Ne), and average relatedness (r). Genetic species assignments reclassified 25% of initial field identifications (N = 11 M. ochrogaster; N = 67 M. pennsylvanicus). In M. ochrogaster population connectivity was high across the study area, reflected in little to no spatial or temporal genetic structure. In M. pennsylvanicus genetic structure was detected, but relatedness estimates identified it as kin-clustering instead, underscoring social behavior among populations rather than spatial isolation as the cause. Estimates of Ne and r were stable across years, reflecting high dispersal and demographic resilience. Combined, these metrics suggest the agricultural matrix is highly permeable for voles and does not impede dispersal. High connectivity observed confirms that the restored landscape is productive and permeable for specific management targets such as voles and also demonstrates population genetic assays as a tool to statistically evaluate effectiveness of conservation initiatives.
Collapse
Affiliation(s)
- Marlis R. Douglas
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| | - Steven M. Mussmann
- Southwestern Native Aquatic Resources and Recovery Center, U.S. Fish & Wildlife Service, Dexter, New Mexico, United States of America
| | - Tyler K. Chafin
- Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | | | - Mark A. Davis
- Illinois Natural History Survey, University of Illinois, Champaign, Illinois, United States of America
| | | | - Robert L. Schooley
- Natural Resources and Environmental Sciences, University of Illinois, Urbana, Illinois, United States of America
| | - Wade Louis
- Illinois Department of Natural Resources, Gibson City, Illinois, United States of America
| | - Michael E. Douglas
- Biological Sciences, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
2
|
Dominguez JC, Calero-Riestra M, Olea PP, Malo JE, Burridge CP, Proft K, Illanas S, Viñuela J, García JT. Lack of detectable genetic isolation in the cyclic rodent Microtus arvalis despite large landscape fragmentation owing to transportation infrastructures. Sci Rep 2021; 11:12534. [PMID: 34131199 PMCID: PMC8206325 DOI: 10.1038/s41598-021-91824-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/31/2021] [Indexed: 02/05/2023] Open
Abstract
Although roads are widely seen as dispersal barriers, their genetic consequences for animals that experience large fluctuations in population density are poorly documented. We developed a spatially paired experimental design to assess the genetic impacts of roads on cyclic voles (Microtus arvalis) during a high-density phase in North-Western Spain. We compared genetic patterns from 15 paired plots bisected by three different barrier types, using linear mixed models and computing effect sizes to assess the importance of each type, and the influence of road features like width or the age of the infrastructure. Evidence of effects by roads on genetic diversity and differentiation were lacking. We speculate that the recurrent (each 3-5 generations) episodes of massive dispersal associated with population density peaks can homogenize populations and mitigate the possible genetic impact of landscape fragmentation by roads. This study highlights the importance of developing spatially replicated experimental designs that allow us to consider the large natural spatial variation in genetic parameters. More generally, these results contribute to our understanding of the not well explored effects of habitat fragmentation on dispersal in species showing "boom-bust" dynamics.
Collapse
Affiliation(s)
- Julio C Dominguez
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain.
| | - María Calero-Riestra
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Pedro P Olea
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Juan E Malo
- Terrestrial Ecology Group (TEG-UAM), Departamento de Ecología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Darwin 2, 28049, Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC-UAM), Universidad Autónoma de Madrid, C. Darwin 2, 28049, Madrid, Spain
| | - Christopher P Burridge
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Kirstin Proft
- Discipline of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS, 7001, Australia
| | - Sonia Illanas
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Javier Viñuela
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| | - Jesús T García
- IREC, Instituto de Investigación en Recursos Cinegéticos (CSIC-UCLM-JCCM), Ronda de Toledo, 12, 13071, Ciudad Real, Spain
| |
Collapse
|
4
|
Shaw RE, Banks SC, Peakall R. The impact of mating systems and dispersal on fine-scale genetic structure at maternally, paternally and biparentally inherited markers. Mol Ecol 2017; 27:66-82. [PMID: 29154412 DOI: 10.1111/mec.14433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/06/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Abstract
For decades, studies have focused on how dispersal and mating systems influence genetic structure across populations or social groups. However, we still lack a thorough understanding of how these processes and their interaction shape spatial genetic patterns over a finer scale (tens-hundreds of metres). Using uniparentally inherited markers may help answer these questions, yet their potential has not been fully explored. Here, we use individual-level simulations to investigate the effects of dispersal and mating system on fine-scale genetic structure at autosomal, mitochondrial and Y chromosome markers. Using genetic spatial autocorrelation analysis, we found that dispersal was the major driver of fine-scale genetic structure across maternally, paternally and biparentally inherited markers. However, when dispersal was restricted (mean distance = 100 m), variation in mating behaviour created strong differences in the comparative level of structure detected at maternally and paternally inherited markers. Promiscuity reduced spatial genetic structure at Y chromosome loci (relative to monogamy), whereas structure increased under polygyny. In contrast, mitochondrial and autosomal markers were robust to differences in the specific mating system, although genetic structure increased across all markers when reproductive success was skewed towards fewer individuals. Comparing males and females at Y chromosome vs. mitochondrial markers, respectively, revealed that some mating systems can generate similar patterns to those expected under sex-biased dispersal. This demonstrates the need for caution when inferring ecological and behavioural processes from genetic results. Comparing patterns between the sexes, across a range of marker types, may help us tease apart the processes shaping fine-scale genetic structure.
Collapse
Affiliation(s)
- Robyn E Shaw
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia.,The Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Sam C Banks
- The Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Rod Peakall
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
5
|
Keane B, Castelli FR, Davis H, Crist TO, Solomon NG. Effects of
avpr1a
length polymorphism on male social behavior and reproduction in semi‐natural populations of prairie voles (
Microtus ochrogaster
). Ethology 2017. [DOI: 10.1111/eth.12641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Brian Keane
- Department of Biology Center for Animal Behavior Miami University‐Hamilton Hamilton OH USA
| | - Frank R. Castelli
- Department of Biology Center for Animal Behavior Miami University Oxford OH USA
| | - Haley Davis
- Department of Biology Center for Animal Behavior Miami University Oxford OH USA
| | - Thomas O. Crist
- Department of Biology Center for Animal Behavior Miami University Oxford OH USA
| | - Nancy G. Solomon
- Department of Biology Center for Animal Behavior Miami University Oxford OH USA
| |
Collapse
|