1
|
Bassani S, Chrast J, Ambrosini G, Voisin N, Schütz F, Brusco A, Sirchia F, Turban L, Schubert S, Abou Jamra R, Schlump JU, DeMille D, Bayrak-Toydemir P, Nelson GR, Wong KN, Duncan L, Mosera M, Gilissen C, Vissers LELM, Pfundt R, Kersseboom R, Yttervik H, Hansen GÅM, Smeland MF, Butler KM, Lyons MJ, Carvalho CMB, Zhang C, Lupski JR, Potocki L, Flores-Gallegos L, Morales-Toquero R, Petit F, Yalcin B, Tuttle A, Elloumi HZ, McCormick L, Kukolich M, Klaas O, Horvath J, Scala M, Iacomino M, Operto F, Zara F, Writzl K, Maver A, Haanpää MK, Pohjola P, Arikka H, Kievit AJA, Calandrini C, Iseli C, Guex N, Reymond A. Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles. Genome Med 2024; 16:72. [PMID: 38811945 PMCID: PMC11137988 DOI: 10.1186/s13073-024-01339-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/19/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney, caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative mode of action, wherein an increased level of AFF3 resulted in pathological effects. METHODS Evolutionary constraints suggest that other modes-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be damaging variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. RESULTS We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous Loss-of-Function (LoF) or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not rescue these phenotypes. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring + / + , KINSSHIP/KINSSHIP, LoF/ + , LoF/LoF or KINSSHIP/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the KINSSHIP/KINSSHIP or the LoF/LoF lines. While the same pathways are affected, only about one third of the differentially expressed genes are common to the homozygote datasets, indicating that AFF3 LoF and KINSSHIP variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. CONCLUSIONS Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
- Present address: Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland
- Present address: Sophia Genetics, St Sulpice, Switzerland
| | - Frédéric Schütz
- Biostatistics Platform, University of Lausanne, Lausanne, Switzerland
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città Della Salute E Della Scienza University Hospital, 10126, Turin, Italy
| | - Fabio Sirchia
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126, Turin, Italy
- Medical Genetics Unit, Città Della Salute E Della Scienza University Hospital, 10126, Turin, Italy
- Present address: Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Present address: Medical Genetics Unit, IRCCS San Matteo Foundation, Pavia, Italy
| | - Lydia Turban
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan-Ulrich Schlump
- Department of Pediatrics, Centre for Neuromedicine, Gemeinschaftskrankenhaus Herdecke Gerhard-Kienle-Weg, Herdecke, Germany
| | - Desiree DeMille
- Genomics Analysis 396, ARUP Laboratories, Salt Lake City, UT, USA
| | | | - Gary Rex Nelson
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Kristen Nicole Wong
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Laura Duncan
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, TN, USA
- Present address: Mayo Clinic, Rochester, MN, USA
| | - Mackenzie Mosera
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Christian Gilissen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lisenka E L M Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Rogier Kersseboom
- Center for Genetic Developmental Disorders Southwest, Zuidwester, Middelharnis, The Netherlands
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | | | | | | | | | - Claudia M B Carvalho
- Pacific Northwest Research Institute (PNRI), Broadway, Seattle, WA, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - James R Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | | | | | | | - Binnaz Yalcin
- Inserm UMR1231, University of Burgundy, 21000, Dijon, France
| | | | | | - Lane McCormick
- Department of Genetics, Cook Children's Medical Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Mary Kukolich
- Department of Genetics, Cook Children's Medical Center, Cook Children's Health Care System, Fort Worth, TX, USA
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Marcello Scala
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, 16132, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Operto
- Department of Medicine, Child and Adolescent Neuropsychiatry Unit, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Federico Zara
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, 16132, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Aleš Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria K Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Pia Pohjola
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Harri Arikka
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Anneke J A Kievit
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Camilla Calandrini
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Genopode Building, Lausanne, CH, 1015, Switzerland.
| |
Collapse
|
2
|
Bassani S, Chrast J, Ambrosini G, Voisin N, Schütz F, Brusco A, Sirchia F, Turban L, Schubert S, Jamra RA, Schlump JU, DeMille D, Bayrak-Toydemir P, Nelson GR, Wong KN, Duncan L, Mosera M, Gilissen C, Vissers LE, Pfundt R, Kersseboom R, Yttervik H, Hansen GÅM, Falkenberg Smeland M, Butler KM, Lyons MJ, Carvalho CM, Zhang C, Lupski JR, Potocki L, Flores-Gallegos L, Morales-Toquero R, Petit F, Yalcin B, Tuttle A, Elloumi HZ, Mccormick L, Kukolich M, Klaas O, Horvath J, Scala M, Iacomino M, Operto F, Zara F, Writzl K, Maver A, Haanpää MK, Pohjola P, Arikka H, Iseli C, Guex N, Reymond A. Variant-specific pathophysiological mechanisms of AFF3 differently influence transcriptome profiles. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.14.24301100. [PMID: 38293053 PMCID: PMC10827271 DOI: 10.1101/2024.01.14.24301100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Background We previously described the KINSSHIP syndrome, an autosomal dominant disorder associated with intellectual disability (ID), mesomelic dysplasia and horseshoe kidney,caused by de novo variants in the degron of AFF3. Mouse knock-ins and overexpression in zebrafish provided evidence for a dominant-negative (DN) mode-of-action, wherein an increased level of AFF3 resulted in pathological effects. Methods Evolutionary constraints suggest that other mode-of-inheritance could be at play. We challenged this hypothesis by screening ID cohorts for individuals with predicted-to-be deleterious variants in AFF3. We used both animal and cellular models to assess the deleteriousness of the identified variants. Results We identified an individual with a KINSSHIP-like phenotype carrying a de novo partial duplication of AFF3 further strengthening the hypothesis that an increased level of AFF3 is pathological. We also detected seventeen individuals displaying a milder syndrome with either heterozygous LoF or biallelic missense variants in AFF3. Consistent with semi-dominance, we discovered three patients with homozygous LoF and one compound heterozygote for a LoF and a missense variant, who presented more severe phenotypes than their heterozygous parents. Matching zebrafish knockdowns exhibit neurological defects that could be rescued by expressing human AFF3 mRNA, confirming their association with the ablation of aff3. Conversely, some of the human AFF3 mRNAs carrying missense variants identified in affected individuals did not complement. Overexpression of mutated AFF3 mRNAs in zebrafish embryos produced a significant increase of abnormal larvae compared to wild-type overexpression further demonstrating deleteriousness. To further assess the effect of AFF3 variation, we profiled the transcriptome of fibroblasts from affected individuals and engineered isogenic cells harboring +/+, DN/DN, LoF/+, LoF/LoF or DN/LoF AFF3 genotypes. The expression of more than a third of the AFF3 bound loci is modified in either the DN/DN or the LoF/LoF lines. While the same pathways are affected, only about one-third of the differentially expressed genes are common to these homozygote datasets, indicating that AFF3 LoF and DN variants largely modulate transcriptomes differently, e.g. the DNA repair pathway displayed opposite modulation. Conclusions Our results and the high pleiotropy shown by variation at this locus suggest that minute changes in AFF3 function are deleterious.
Collapse
Affiliation(s)
- Sissy Bassani
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Jacqueline Chrast
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Giovanna Ambrosini
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Frédéric Schütz
- Biostatistics platform, University of Lausanne, Lausanne, Switzerland
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Fabio Sirchia
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, 10126 Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, 10126 Turin, Italy
| | - Lydia Turban
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Susanna Schubert
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Rami Abou Jamra
- Institute of Human Genetics, University of Leipzig Medical Center, Leipzig, Germany
| | - Jan-Ulrich Schlump
- Department of Pediatrics, Centre for Neuromedicine, Gemeinschaftskrankenhaus Herdecke Gerhard-Kienle-Weg, Herdecke, Germany
| | - Desiree DeMille
- Genomics Analysis 396, ARUP Laboratories, Salt Lake City, Utah, USA
| | - Pinar Bayrak-Toydemir
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Gary Rex Nelson
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kristen Nicole Wong
- Pediatric Neurology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laura Duncan
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Mackenzie Mosera
- Department of Pediatrics, Medical Center North, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Christian Gilissen
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lisenka E.L.M. Vissers
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rolph Pfundt
- Department of Human Genetics, Research Institute for Medical Innovation, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Rogier Kersseboom
- Center for genetic developmental disorders southwest, Zuidwester, Middelharnis, The Netherlands
| | - Hilde Yttervik
- Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway
| | | | | | | | | | - Claudia M.B. Carvalho
- Pacific Northwest Research Institute (PNRI), Broadway, Seattle, Washington, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Chaofan Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - James R. Lupski
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Hospital, Houston, Texas, USA
| | | | | | | | - Binnaz Yalcin
- Inserm UMR1231, University of Burgundy, 21000 Dijon, France
| | | | | | - Lane Mccormick
- Department of Genetics, Cook Children’s Medical Center, Cook Children’s Health Care System, Fort Worth, Texas, USA
| | - Mary Kukolich
- Department of Genetics, Cook Children’s Medical Center, Cook Children’s Health Care System, Fort Worth, Texas, USA
| | - Oliver Klaas
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Judit Horvath
- Institute for Human Genetics, University Hospital Muenster, Muenster, Germany
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Francesca Operto
- Child and Adolescent Neuropsychiatry Unit, Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132, Genoa, Italy
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Karin Writzl
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ales Maver
- Clinical Institute of Genomic Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Maria K. Haanpää
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Pia Pohjola
- Department of Genomics, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Harri Arikka
- Department of Pediatric Neurology, Turku University Hospital, Turku, Finland; University of Turku, Turku, Finland
| | - Christian Iseli
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- Bioinformatics Competence Center, University of Lausanne, Lausanne, Switzerland
- Bioinformatics Competence Center, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
3
|
Tsukumo SI, Subramani PG, Seija N, Tabata M, Maekawa Y, Mori Y, Ishifune C, Itoh Y, Ota M, Fujio K, Di Noia JM, Yasutomo K. AFF3, a susceptibility factor for autoimmune diseases, is a molecular facilitator of immunoglobulin class switch recombination. SCIENCE ADVANCES 2022; 8:eabq0008. [PMID: 36001653 PMCID: PMC9401627 DOI: 10.1126/sciadv.abq0008] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Immunoglobulin class switch recombination (CSR) plays critical roles in controlling infections and inflammatory tissue injuries. Here, we show that AFF3, a candidate gene for both rheumatoid arthritis and type 1 diabetes, is a molecular facilitator of CSR with an isotype preference. Aff3-deficient mice exhibit low serum levels of immunoglobulins, predominantly immunoglobulin G2c (IgG2c) followed by IgG1 and IgG3 but not IgM. Furthermore, Aff3-deficient mice show weak resistance to Plasmodium yoelii infection, confirming that Aff3 modulates immunity to this pathogen. Mechanistically, the AFF3 protein binds to the IgM and IgG1 switch regions via a C-terminal domain, and Aff3 deficiency reduces the binding of AID to the switch regions less efficiently. One AFF3 risk allele for rheumatoid arthritis is associated with high mRNA expression of AFF3, IGHG2, and IGHA2 in human B cells. These findings demonstrate that AFF3 directly regulates CSR by facilitating the recruitment of AID to the switch regions.
Collapse
Affiliation(s)
- Shin-ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Poorani Ganesh Subramani
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine and Division of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Noé Seija
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Mizuho Tabata
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yoichi Maekawa
- Department of Parasitology and Infectious Diseases, Gifu University Graduate School of Medicine, Gifu, Japan
| | - Yuya Mori
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Chieko Ishifune
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Shiga, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Javier M. Di Noia
- Institut de Recherches Cliniques de Montréal, Montréal, QC, Canada
- Department of Medicine and Division of Experimental Medicine, McGill University, Montréal, QC, Canada
- Molecular Biology Programs, Department of Medicine, University of Montreal, Montréal, QC, Canada
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
- Department of Interdisciplinary Research on Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
- The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
4
|
Eigenhuis KN, Somsen HB, van den Berg DLC. Transcription Pause and Escape in Neurodevelopmental Disorders. Front Neurosci 2022; 16:846272. [PMID: 35615272 PMCID: PMC9125161 DOI: 10.3389/fnins.2022.846272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription pause-release is an important, highly regulated step in the control of gene expression. Modulated by various factors, it enables signal integration and fine-tuning of transcriptional responses. Mutations in regulators of pause-release have been identified in a range of neurodevelopmental disorders that have several common features affecting multiple organ systems. This review summarizes current knowledge on this novel subclass of disorders, including an overview of clinical features, mechanistic details, and insight into the relevant neurodevelopmental processes.
Collapse
|
5
|
Voisin N, Schnur RE, Douzgou S, Hiatt SM, Rustad CF, Brown NJ, Earl DL, Keren B, Levchenko O, Geuer S, Verheyen S, Johnson D, Zarate YA, Hančárová M, Amor DJ, Bebin EM, Blatterer J, Brusco A, Cappuccio G, Charrow J, Chatron N, Cooper GM, Courtin T, Dadali E, Delafontaine J, Del Giudice E, Doco M, Douglas G, Eisenkölbl A, Funari T, Giannuzzi G, Gruber-Sedlmayr U, Guex N, Heron D, Holla ØL, Hurst ACE, Juusola J, Kronn D, Lavrov A, Lee C, Lorrain S, Merckoll E, Mikhaleva A, Norman J, Pradervand S, Prchalová D, Rhodes L, Sanders VR, Sedláček Z, Seebacher HA, Sellars EA, Sirchia F, Takenouchi T, Tanaka AJ, Taska-Tench H, Tønne E, Tveten K, Vitiello G, Vlčková M, Uehara T, Nava C, Yalcin B, Kosaki K, Donnai D, Mundlos S, Brunetti-Pierri N, Chung WK, Reymond A. Variants in the degron of AFF3 are associated with intellectual disability, mesomelic dysplasia, horseshoe kidney, and epileptic encephalopathy. Am J Hum Genet 2021; 108:857-873. [PMID: 33961779 DOI: 10.1016/j.ajhg.2021.04.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
The ALF transcription factor paralogs, AFF1, AFF2, AFF3, and AFF4, are components of the transcriptional super elongation complex that regulates expression of genes involved in neurogenesis and development. We describe an autosomal dominant disorder associated with de novo missense variants in the degron of AFF3, a nine amino acid sequence important for its binding to ubiquitin ligase, or with de novo deletions of this region. The sixteen affected individuals we identified, along with two previously reported individuals, present with a recognizable pattern of anomalies, which we named KINSSHIP syndrome (KI for horseshoe kidney, NS for Nievergelt/Savarirayan type of mesomelic dysplasia, S for seizures, H for hypertrichosis, I for intellectual disability, and P for pulmonary involvement), partially overlapping the AFF4-associated CHOPS syndrome. Whereas homozygous Aff3 knockout mice display skeletal anomalies, kidney defects, brain malformations, and neurological anomalies, knockin animals modeling one of the microdeletions and the most common of the missense variants identified in affected individuals presented with lower mesomelic limb deformities like KINSSHIP-affected individuals and early lethality, respectively. Overexpression of AFF3 in zebrafish resulted in body axis anomalies, providing some support for the pathological effect of increased amount of AFF3. The only partial phenotypic overlap of AFF3- and AFF4-associated syndromes and the previously published transcriptome analyses of ALF transcription factors suggest that these factors are not redundant and each contributes uniquely to proper development.
Collapse
Affiliation(s)
- Norine Voisin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Rhonda E Schnur
- GeneDx, Gaithersburg, MD 20877, USA; Cooper Medical School of Rowan University, Division of Genetics, Camden, NJ 08103, USA
| | - Sofia Douzgou
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Susan M Hiatt
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Cecilie F Rustad
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Natasha J Brown
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Olga Levchenko
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | - Sinje Geuer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Sarah Verheyen
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Diana Johnson
- Sheffield Clinical Genetics Service, Sheffield S10 2TQ, UK
| | - Yuri A Zarate
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Miroslava Hančárová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - David J Amor
- Murdoch Children's Research Institute, Flemington Road, Parkville, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Flemington Road, Parkville, VIC 3052, Australia
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jasmin Blatterer
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Alfredo Brusco
- Department of Medical Sciences, University of Torino, Torino 10126, Italy; Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Torino 10126, Italy
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Joel Charrow
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Nicolas Chatron
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Genetics Department, Lyon University Hospital, Lyon 69007, France
| | - Gregory M Cooper
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Thomas Courtin
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Elena Dadali
- Research Centre for Medical Genetics, Moscow 115522, Russia
| | | | - Ennio Del Giudice
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Martine Doco
- Secteur Génétique, CHU Reims, EA3801, SFR CAPSANTE, 51092 Reims, France
| | | | - Astrid Eisenkölbl
- Department of Pediatrics and Adolescent Medicine, Johannes Kepler University, Kepler University Hospital Linz, Krankenhausstraße 26-30, 4020 Linz, Austria
| | | | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | - Ursula Gruber-Sedlmayr
- Division of General Pediatrics, Department of Pediatrics and Adolescent Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Nicolas Guex
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Bioinformatics Competence Center, University of Lausanne, Lausanne 1015, Switzerland
| | - Delphine Heron
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Øystein L Holla
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Anna C E Hurst
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | | | - David Kronn
- New York Medical College, Valhalla, NY 10595, USA
| | | | - Crystle Lee
- Victorian Clinical Genetics Services, Flemington Road, Parkville, VIC 3052, Australia
| | - Séverine Lorrain
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Protein Analysis Facility, University of Lausanne, Lausanne 1015, Switzerland
| | - Else Merckoll
- Department of Radiology, Oslo University Hospital, 0424 Oslo, Norway
| | - Anna Mikhaleva
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Sylvain Pradervand
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Darina Prchalová
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | | | - Victoria R Sanders
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Zdeněk Sedláček
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Heidelis A Seebacher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular Biomedicine, Medical University of Graz, 8010 Graz, Austria
| | - Elizabeth A Sellars
- Section of Genetics and Metabolism, University of Arkansas for Medical Sciences, Little Rock, AR 72701, USA
| | - Fabio Sirchia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste 34100, Italy
| | - Toshiki Takenouchi
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Akemi J Tanaka
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Heidi Taska-Tench
- Division of Genetics, Birth Defects & Metabolism, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA
| | - Elin Tønne
- Department of Medical Genetics, Oslo University Hospital, 0424 Oslo, Norway
| | - Kristian Tveten
- Department of Medical Genetics, Telemark Hospital Trust, 3710 Skien, Norway
| | - Giuseppina Vitiello
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy
| | - Markéta Vlčková
- Charles University Second Faculty of Medicine and University Hospital Motol, 150 06 Prague, Czech Republic
| | - Tomoko Uehara
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Caroline Nava
- Department of Genetics, Pitié-Salpêtrière Hospital, Assistance Publique - Hôpitaux de Paris, Groupe de Recherche Clinique Déficience Intellectuelle et Autisme UPMC, Paris 75013, France
| | - Binnaz Yalcin
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland; Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Kenjiro Kosaki
- Center for Medical Genetics, Department of Pediatrics, Keio University School of Medicine, Tokyo 1608582, Japan
| | - Dian Donnai
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester M13 9WL, UK; Division of Evolution and Genomic Sciences, School of Biological Sciences, University of Manchester, Manchester M13 9NT, UK
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany; Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin 10117, Germany
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80131, Italy; Telethon Institute of Genetics and Medicine, Pozzuoli, Naples 80078, Italy
| | - Wendy K Chung
- Department of Pediatrics, Columbia University, New York, NY 10032, USA; Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Alexandre Reymond
- Center for Integrative Genomics, University of Lausanne, Lausanne 1015, Switzerland.
| |
Collapse
|
6
|
Yue J, Dai Q, Hao S, Zhu S, Liu X, Tang Z, Li M, Fang H, Lin C, Luo Z. Suppression of the NTS-CPS1 regulatory axis by AFF1 in lung adenocarcinoma cells. J Biol Chem 2021; 296:100319. [PMID: 33493519 PMCID: PMC7949158 DOI: 10.1016/j.jbc.2021.100319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Upregulation of the neuropeptide neurotensin (NTS) in a subgroup of lung cancers has been linked to poor prognosis. However, the regulatory pathway centered on NTS in lung cancer remains unclear. Here we identified the NTS-specific enhancer in lung adenocarcinoma cells. The AF4/FMR2 (AFF) family protein AFF1 occupies the NTS enhancer and inhibits NTS transcription. Clustering analysis of lung adenocarcinoma gene expression data demonstrated that NTS expression is highly positively correlated with the expression of the oncogenic factor CPS1. Detailed analyses demonstrated that the IL6 pathway antagonizes NTS in regulating CPS1. Thus, our analyses revealed a novel NTS-centered regulatory axis, consisting of AFF1 as a master transcription suppressor and IL6 as an antagonist in lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Junjie Yue
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Qian Dai
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shaohua Hao
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Shiqi Zhu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Xiaoxu Liu
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zhiqun Tang
- Singapore Eye research Institute, Singapore, Singapore
| | - Meng Li
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Haitong Fang
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chengqi Lin
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Zhuojuan Luo
- The Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
7
|
Veitia RA. AFF3: a new player in maintaining XIST monoallelic expression. J Mol Cell Biol 2019; 11:723-724. [PMID: 30629198 PMCID: PMC6821381 DOI: 10.1093/jmcb/mjy082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 11/20/2022] Open
Affiliation(s)
- Reiner A Veitia
- Institut Jacques Monod, Université Paris Diderot, Paris, France.,Université Paris-Diderot, Paris, France
| |
Collapse
|