1
|
Jones RT, Fagbohun IK, Spencer FI, Chen-Hussey V, Paris LA, Logan JG, Hiscox A. A review of Musca sorbens (Diptera: Muscidae) and Musca domestica behavior and responses to chemical and visual cues. JOURNAL OF MEDICAL ENTOMOLOGY 2024; 61:845-860. [PMID: 38795384 DOI: 10.1093/jme/tjae070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/28/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Musca flies (Diptera: Muscidae) have been found culpable in the mechanical transmission of several infectious agents, including viruses, bacteria, protozoans, and helminths, particularly in low-income settings in tropical regions. In large numbers, these flies can negatively impact the health of communities and their livestock through the transmission of pathogens. In some parts of the world, Musca sorbens is of particular importance because it has been linked with the transmission of trachoma, a leading cause of preventable and irreversible blindness or visual impairment caused by Chlamydia trachomatis, but the contribution these flies make to trachoma transmission has not been quantified and even less is known for other pathogens. Current tools for control and monitoring of house flies remain fairly rudimentary and have focused on the use of environmental management, insecticides, traps, and sticky papers. Given that the behaviors of flies are triggered by chemical cues from their environment, monitoring approaches may be improved by focusing on those activities that are associated with nuisance behaviors or with potential pathogen transmission, and there are opportunities to improve fly control by exploiting behaviors toward semiochemicals that act as attractants or repellents. We review current knowledge on the odor and visual cues that affect the behavior of M. sorbens and Musca domestica, with the aim of better understanding how these can be exploited to support disease monitoring and guide the development of more effective control strategies.
Collapse
Affiliation(s)
- Robert T Jones
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Ifeoluwa K Fagbohun
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Freya I Spencer
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Vanessa Chen-Hussey
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - Laura A Paris
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| | - James G Logan
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
- Department of Disease Control, London School of Hygiene & Tropical Medicine, Keppel Street, London, UK
| | - Alexandra Hiscox
- Arctech Innovation, The Cube, Londoneast-uk Business and Technical Park, Yew Tree Avenue, Dagenham, UK
| |
Collapse
|
2
|
Nayduch D, Neupane S, Pickens V, Purvis T, Olds C. House Flies Are Underappreciated Yet Important Reservoirs and Vectors of Microbial Threats to Animal and Human Health. Microorganisms 2023; 11:microorganisms11030583. [PMID: 36985156 PMCID: PMC10054770 DOI: 10.3390/microorganisms11030583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
House flies are well recognized as filth-associated organisms and public nuisances. House flies create sanitation issues when they bridge the gap between microbe-rich breeding environments and animal/human habitations. Numerous scientific surveys have demonstrated that house flies harbor bacterial pathogens that pose a threat to humans and animals. More extensive and informative surveys incorporating next-generation sequencing technologies have shown that house fly carriage of pathogens and harmful genetic elements, such as antimicrobial resistance genes, is more widespread and dangerous than previously thought. Further, there is a strong body of research confirming that flies not only harbor but also transmit viable, and presumably infectious, bacterial pathogens. Some pathogens replicate and persist in the fly, permitting prolonged shedding and dissemination. Finally, although the drivers still have yet to be firmly determined, the potential range of dissemination of flies and their associated pathogens can be extensive. Despite this evidence, the house flies’ role as reservoirs, disseminators, and true, yet facultative, vectors for pathogens have been greatly underestimated and underappreciated. In this review, we present key studies that bolster the house fly’s role both an important player in microbial ecology and population biology and as transmitters of microbial threats to animal and human health.
Collapse
Affiliation(s)
- Dana Nayduch
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, 1515 College Avenue, Manhattan, KS 66502, USA
- Correspondence: (D.N.); (C.O.)
| | - Saraswoti Neupane
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Victoria Pickens
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
| | - Tanya Purvis
- Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, 1515 College Avenue, Manhattan, KS 66502, USA
| | - Cassandra Olds
- Department of Entomology, Kansas State University, Manhattan, KS 66506, USA
- Correspondence: (D.N.); (C.O.)
| |
Collapse
|