1
|
Peterson JK, Hoyos J, Bartlett CR, Gottdenker NL, Kunkel B, Murphy C, Alvarado A. First Report of Chagas Disease Vector Species Triatoma sanguisuga (Hemiptera: Reduviidae) Infected with Trypanosoma cruzi in Delaware. Am J Trop Med Hyg 2024; 110:925-929. [PMID: 38531096 PMCID: PMC11066352 DOI: 10.4269/ajtmh.23-0915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 01/21/2024] [Indexed: 03/28/2024] Open
Abstract
In July and October 2023, two live triatomine bugs were found inside a home in New Castle County, Delaware. The bugs were identified as Triatoma sanguisuga, the most widespread triatomine bug species in the United States. Triatoma sanguisuga is a competent vector of Trypanosoma cruzi, the causative agent of Chagas disease. The two specimens were tested via real-time PCR (qPCR) for infection with T. cruzi, and one of the specimens was positive. Despite T. sanguisuga being endemic to the area, attainment of accurate species identification and T. cruzi testing of the bugs required multiple calls to federal, state, private, and academic institutions over several months. This constitutes the first report of T. sanguisuga infected with T. cruzi in Delaware. In addition, this is the first published report of T. sanguisuga in New Castle County, the northernmost and most densely populated county in Delaware. New Castle County still conforms to the described geographic range of T. sanguisuga, which spans from Texas to the East Coast of the United States. The T. cruzi infection prevalence of the species has not been studied in the northeastern United States, but collections in southern states have found prevalences as high as 60%. The Delaware homeowner's lengthy pursuit of accurate information about the vector highlights the need for more research on this important disease vector in Delaware.
Collapse
Affiliation(s)
- Jennifer K. Peterson
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware
| | - Juliana Hoyos
- Odum School of Ecology, University of Georgia, Athens, Georgia
| | - Charles R. Bartlett
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, Delaware
| | - Nicole L. Gottdenker
- Department of Veterinary Pathology, University of Georgia College of Veterinary Medicine, Athens, Georgia
| | - Brian Kunkel
- University of Delaware Cooperative Extension Service, Newark, Delaware
| | - Carrie Murphy
- University of Delaware Cooperative Extension Service, Newark, Delaware
| | - Antonio Alvarado
- Delaware Department of Health and Social Services, Division of Public Health, Dover, Delaware
| |
Collapse
|
2
|
Siderhurst MS, Murman KM, Kaye KT, Wallace MS, Cooperband MF. Radio Telemetry and Harmonic Radar Tracking of the Spotted Lanternfly, Lycorma delicatula (White) (Hemiptera: Fulgoridae). INSECTS 2023; 15:17. [PMID: 38249023 PMCID: PMC10816356 DOI: 10.3390/insects15010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024]
Abstract
Lycorma delicatula (White) (Hemiptera: Fulgoridae), spotted lanternfly (SLF), is an invasive pest that feeds and oviposits on numerous woody and herbaceous plants important to agricultural, forest, ornamental, and nursery industries. Describing and understanding SLF movements is key to implementing surveillance and control strategies for this pest and projecting population spread. We used radio telemetry (RT) and harmonic radar (HR) to track the movements of individual SLF at field sites in eastern Pennsylvania and northwestern New Jersey. SLF equipped with HR or RT tags were tracked in 2019 and 2020 from adult emergence until oviposition time, and their movements are described. Although the bulkier RT tags disproportionately affected the distance traveled by males, which are smaller than females, both males and females were more likely to be lost due to signal attenuation when affixed with the lighter-weight HR tags. Females were tracked moving longer distances than males, with maximum distances of 434 m by a single female and 57 m by a single male. A significant positive relationship was found between their height in trees and the distance of subsequent movement. Adult SLF were found in trees predominantly at heights between 6-9 m high. For the fraction of SLF found at eye level, males, but not females, significantly moved above eye level in the weeks prior to mating, likely resulting in the observed sex ratio shift that defines the Early-2 stage. During mating time, tracked SLF were significantly higher than 8 m and oriented to trees where tight aggregations of SLF were present. This orientation towards tight aggregations started when mating began and peaked in the following 2.5 weeks for males in Late-1 and the beginning of Late-2 (after oviposition began), whereas females started this orientation behavior a half-week after males, and this activity peaked for two weeks. Male and female SLF adults exhibited slight differences in host preference, and strong preferences for wild grape, black walnut, sweet birch, and tree-of-heaven were observed. The HR-tagged nymphs moved up to 27.6 m over a five-day period in a cornfield. Nitinol wire HR tags performed better than Wollaston process or tungsten wire tags. SLF movement parameters in the field are described.
Collapse
Affiliation(s)
| | - Kelly M. Murman
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, Buzzards Bay, MA 02542, USA
| | - Kyle T. Kaye
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, Buzzards Bay, MA 02542, USA
- Biology Department, East Stroudsburg University, East Stroudsburg, PA 18301, USA;
| | - Matthew S. Wallace
- Biology Department, East Stroudsburg University, East Stroudsburg, PA 18301, USA;
| | | |
Collapse
|
3
|
Kiehl WM, Hodo CL, Hamer GL, Hamer SA, Wilkerson GK. Exclusion of Horizontal and Vertical Transmission as Major Sources of Trypanosoma Cruzi Infections in a Breeding Colony of Rhesus Macaques ( Macaca Mulatta). Comp Med 2023; 73:229-241. [PMID: 37268411 PMCID: PMC10290485 DOI: 10.30802/aalas-cm-23-000005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/26/2023] [Accepted: 03/08/2023] [Indexed: 06/04/2023]
Abstract
The vector-borne protozoal parasite Trypanosoma cruzi causes Chagas disease in humans and animals. This parasite is endemic to the southern United States where outdoor-housed NHP at biomedical facilities are at risk of infection. In addi- tion to the direct morbidity caused by T. cruzi, infected animals are of limited biomedical research use because infections can produce confounding pathophysiologic changes even in animals with no clinical disease. In part due to concerns for direct T. cruzi transmission between animals, infected NHP at some institutions have been culled, removed, or otherwise isolated from uninfected animal populations. However, data that document horizontal or vertical transmission in captive NHP in the United States are not available. To evaluate the potential for inter-animal transmission and to identify environmental factors that affect the distribution of new infections in NHPs, we conducted a retrospective epidemiologic study of a rhesus macaque ( Macaca mulatta ) breeding colony in south Texas. We used archived biologic samples and husbandry records to identify the time and location of macaque seroconversion. These data were used to perform a spatial analysis of how geographic location and animal associations affected the spread of disease and to infer the importance of horizontal or vertical routes of transmission. The majority of T. cruzi infections were spatially clustered, suggesting that environmental factors promoted vector exposure in various areas of the facility. Although we cannot not rule out horizontal transmission, our data suggest that horizontal transmission was not a critical route for spread for the disease. Vertical transmission was not a contributing factor in this colony. In conclusion, our findings suggest that local triatome vectors were the major source of T. cruzi infections in captive macaques in our colony. Therefore, limiting contact with vectors, rather than segregation of infected macaques, is a key strategy for disease prevention at institutions that house macaques outdoors in the southern United States.
Collapse
Affiliation(s)
- Whitney M Kiehl
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas
| | - Carolyn L Hodo
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Departments of Veterinary Integrative Biosciences
| | | | | | - Gregory K Wilkerson
- MD Anderson Cancer Center, Michale E Keeling Center for Comparative Medicine and Research, Bastrop, Texas; Department of Clinal Sciences, North Carolina State University, Raleigh, North Carolina;,
| |
Collapse
|
4
|
Christopher DM, Curtis-Robles R, Hamer GL, Bejcek J, Saunders AB, Roachell WD, Cropper TL, Hamer SA. Collection of triatomines from sylvatic habitats by a Trypanosoma cruzi-infected scent detection dog in Texas, USA. PLoS Negl Trop Dis 2023; 17:e0010813. [PMID: 36940217 PMCID: PMC10063167 DOI: 10.1371/journal.pntd.0010813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/30/2023] [Accepted: 02/14/2023] [Indexed: 03/21/2023] Open
Abstract
BACKGROUND Triatomine insects, vectors of the etiologic agent of Chagas disease (Trypanosoma cruzi), are challenging to locate in sylvatic habitats. Collection techniques used in the United States often rely on methods to intercept seasonally dispersing adults or on community scientists' encounters. Neither method is suited for detecting nest habitats likely to harbor triatomines, which is important for vector surveillance and control. Furthermore, manual inspection of suspected harborages is difficult and unlikely to reveal novel locations and host associations. Similar to a team that used a trained dog to detect sylvatic triatomines in Paraguay, we worked with a trained scent detection dog to detect triatomines in sylvatic locations across Texas. PRINCIPLE METHODOLOGY/FINDINGS Ziza, a 3-year-old German Shorthaired Pointer previously naturally infected with T. cruzi, was trained to detect triatomines. Over the course of 6 weeks in the fall of 2017, the dog and her handler searched at 17 sites across Texas. The dog detected 60 triatomines at 6 sites; an additional 50 triatomines were contemporaneously collected at 1 of these sites and 2 additional sites without the assistance of the dog. Approximately 0.98 triatomines per hour were found when only humans were conducting searches; when working with the dog, approximately 1.71 triatomines per hour were found. In total, 3 adults and 107 nymphs of four species (Triatoma gerstaeckeri, Triatoma protracta, Triatoma sanguisuga, and Triatoma indictiva) were collected. PCR testing of a subset revealed T. cruzi infection, including DTUs TcI and TcIV, in 27% of nymphs (n = 103) and 66% of adults (n = 3). Bloodmeal analysis of a subset of triatomines (n = 5) revealed feeding on Virginia opossum (Didelphis virginiana), Southern plains woodrat (Neotoma micropus), and eastern cottontail (Sylvilagus floridanus). CONCLUSION/SIGNIFICANCE A trained scent detection dog enhanced triatomine detections in sylvatic habitats. This approach is effective at detecting nidicolous triatomines. Control of sylvatic sources of triatomines is challenging, but this new knowledge of specific sylvatic habitats and key hosts may reveal opportunities for novel vector control methods to block the transmission of T. cruzi to humans and domestic animals.
Collapse
Affiliation(s)
| | - Rachel Curtis-Robles
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gabriel L. Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Justin Bejcek
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Ashley B. Saunders
- Department of Small Animal Clinical Sciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Walter D. Roachell
- Public Health Command Central, JBSA-Fort Sam Houston, San Antonio, Texas, United States of America
| | - Thomas Leo Cropper
- Wilford Hall Ambulatory Surgical Center, Joint Base San Antonio, San Antonio Texas
| | - Sarah A. Hamer
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
5
|
Corrêa-do-Nascimento GS, Leite GR. Current and paleoclimate models for an Atlantic Forest kissing bug indicate broader distribution outside biome delimitations. Front Ecol Evol 2023. [DOI: 10.3389/fevo.2022.1051454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
IntroductionRhodnius domesticus is a kissing bug with known occurrence around the Atlantic coast of South America and is considered to be the only endemic species of the Atlantic Forest for the Rhodniini tribe. In this study, we aimed to indicate the species trends in possible distribution in the current and paleoclimate scenarios from the last glacial maximum (LGM).MethodsWe revised R. domesticus distribution information and created ecological niche models (ENMs) between the current time and Pleistocene end scenarios for the study regions. Models were built and validated using Maxent, KUENM, and ENMeval packages in R and ArcMap. We considered the models' uncertainty when calculating the average model variance and using mobility-oriented parity (MOP) analyses to indicate extrapolation risk areas in transfer scenarios.ResultsWe found 44 different geographical species records, and our current time models indicate suitable areas in coastal regions of the Atlantic and surrounding locations in higher and lower latitudes. Paleoclimate models indicate general suitability in coastal regions and change in suitability in the interior region through time.DiscussionOur revision and ENMs indicate two main points: Despite the fact that R. domesticus records are spatial and time concentrated in some coastal regions of the Atlantic Forest, species could have a broader distribution area, including regions outside the biome delimitations in northeast and southwest areas of South America. Paleodistribution models indicate species broader distribution in Atlantic Forest-related areas in LGM and northern interior regions of South America from late Pleistocene to the current times. In glaciation scenarios, continental shelf distribution was relevant and species' different connectivity routes with other biomes may be developed after LGM.
Collapse
|
6
|
Pahl KB, Yurkowski DJ, Lees KJ, Hussey NE. Measuring the occurrence and strength of intraguild predation in modern food webs. FOOD WEBS 2020. [DOI: 10.1016/j.fooweb.2020.e00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Smith RC. Highlights in Medical Entomology, 2019: Familiar Foes and New Frontiers. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:1349-1353. [PMID: 32667035 PMCID: PMC7716807 DOI: 10.1093/jme/tjaa120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Indexed: 06/11/2023]
Abstract
The 2019 Entomological Society of America annual meeting was held in St. Louis, Missouri, just blocks away from the iconic Gateway Arch. Representing a 'gateway to the West', this inspired the theme of the Highlights in Medical Entomology to reflect on the accomplishments of the past year as we move into a 'new frontier' of vector biology research. Papers were selected broadly across arthropods that influence public health, focusing on topics ranging from West Nile virus transmission, ticks and tick-borne disease, to advances in genetics and 'big data' studies. This included current perspectives on West Nile virus ecology and epidemiology, which has now been endemic in the United States for 20 yr. Additional topics such as the advantages of citizen science and the importance of scientific communication were also discussed. Together, these papers demonstrate the achievements of the vector community while emphasizing the challenges that we collectively face to reduce the burden of vector-borne disease.
Collapse
Affiliation(s)
- Ryan C Smith
- Department of Entomology, Iowa State University, Ames, IA
| |
Collapse
|