Yamamoto K, Iriyama Y, Hirayama T. Operando observations of solid-state electrochemical reactions in Li-ion batteries by spatially resolved TEM EELS and electron holography.
Microscopy (Oxf) 2017;
66:50-61. [PMID:
27733434 DOI:
10.1093/jmicro/dfw043]
[Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 11/13/2022] Open
Abstract
All-solid-state Li-ion batteries having incombustible solid electrolytes are promising energy storage devices because they have significant advantages in terms of safety, lifetime and energy density. Electrochemical reactions, namely, Li-ion insertion/extraction reactions, commonly occur around the nanometer-scale interfaces between the electrodes and solid electrolytes. Thus, transmission electron microscopy (TEM) is an appropriate technique to directly observe such reactions, providing important information for understanding the fundamental solid-state electrochemistry and improving battery performance. In this review, we introduce two types of TEM techniques for operando observations of battery reactions, spatially resolved electron energy-loss spectroscopy in a TEM mode for direct detection of the Li concentration profiles and electron holography for observing the electric potential changes due to Li-ion insertion/extraction reactions. We visually show how Li-ion insertion/extractions affect the crystal structures, electronic structures, and local electric potential during the charge-discharge processes in these batteries.
Collapse