1
|
Pérez-Villegas EM, Pérez-Rodríguez M, Negrete-Díaz JV, Ruiz R, Rosa JL, de Toledo GA, Rodríguez-Moreno A, Armengol JA. HERC1 Ubiquitin Ligase Is Required for Hippocampal Learning and Memory. Front Neuroanat 2020; 14:592797. [PMID: 33328904 PMCID: PMC7710975 DOI: 10.3389/fnana.2020.592797] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/23/2020] [Indexed: 11/23/2022] Open
Abstract
Mutations in the human HERC1 E3 ubiquitin ligase protein develop intellectual disability. The tambaleante (tbl) mouse carries a HERC1 mutation characterized by cerebellar ataxia due of adult cerebellar Purkinje cells death by extensive autophagy. Our previous studies demonstrated that both the neuromuscular junction and the peripheral nerve myelin sheaths are also affected in this mutant. Moreover, there are signs of dysregulated autophagy in the central nervous system in the tbl mouse, affecting spinal cord motor neurons, and pyramidal neurons of the neocortex and the hippocampal CA3 region. The tbl mutation affects associative learning, with absence of short- and long-term potentiation in the lateral amygdala, altered spinogenesis in their neurons, and a dramatic decrease in their glutamatergic input. To assess whether other brain areas engaged in learning processes might be affected by the tbl mutation, we have studied the tbl hippocampus using behavioral tests, ex vivo electrophysiological recordings, immunohistochemistry, the Golgi-Cox method and transmission electron microscopy. The tbl mice performed poorly in the novel-object recognition, T-maze and Morris water maze tests. In addition, there was a decrease in glutamatergic input while the GABAergic one remains unaltered in the hippocampal CA1 region of tbl mice, accompanied by changes in the dendritic spines, and signs of cellular damage. Moreover, the proportions of immature and mature neurons in the dentate gyrus of the tbl hippocampus differ relative to the control mice. Together, these observations demonstrate the important role of HERC1 in regulating synaptic activity during learning.
Collapse
Affiliation(s)
- Eva M. Pérez-Villegas
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - Mikel Pérez-Rodríguez
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José V. Negrete-Díaz
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
- División de Ciencias de la Salud e Ingenierías, Universidad de Guanajuato, Guanajuato, Mexico
| | - Rocío Ruiz
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, Seville, Spain
- Instituto de Biomedicina de Sevilla-Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Jose Luis Rosa
- Departament de Ciències Fisiològiques, IBIDELL, Universitat de Barcelona, Barcelona, Spain
| | | | - Antonio Rodríguez-Moreno
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| | - José A. Armengol
- Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de Olavide, Seville, Spain
| |
Collapse
|
2
|
3D Electron Microscopy Study of Synaptic Organization of the Normal Human Transentorhinal Cortex and Its Possible Alterations in Alzheimer's Disease. eNeuro 2019; 6:ENEURO.0140-19.2019. [PMID: 31217195 PMCID: PMC6620390 DOI: 10.1523/eneuro.0140-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/10/2023] Open
Abstract
The transentorhinal cortex (TEC) is an obliquely oriented cortex located in the medial temporal lobe and, together with the entorhinal cortex, is one of the first affected areas in Alzheimer’s disease (AD). One of the most widely accepted hypotheses is that synaptopathy (synaptic alterations and loss) represents the major structural correlate of the cognitive decline observed in AD. However, very few electron microscope (EM) studies are available; the most common method to estimate synaptic density indirectly is by counting, at the light microscopic level, immunoreactive puncta using synaptic markers. To investigate synaptic morphology and possible alterations related to AD, a detailed three-dimensional (3D) ultrastructural analysis using focused ion beam/scanning EM (FIB/SEM) was performed in the neuropil of Layer II of the TEC in human brain samples from non-demented subjects and AD patients. Evaluation of the proportion and shape of asymmetric synapses (AS) and symmetric synapses (SS) targeting spines or dendritic shafts was performed using 3D reconstructions of every synapse. The 3D analysis of 4722 synapses revealed that the preferable targets were spine heads for AS and dendritic shafts for SS, both in control and AD cases. However, in AD patients, we observed a reduction in the percentage of synapses targeting spine heads. Regarding the shape of synapses, in both control cases and AD samples, the vast majority of synapses had a macular shape, followed by perforated or horseshoe-shaped synapses, with fragmented synapses being the least frequent type. Moreover, comparisons showed an increased number of fragmented AS in AD patients.
Collapse
|
3
|
Du Y, Graves SM. Spiny Projection Neuron Dynamics in Toxin and Transgenic Models of Parkinson's Disease. Front Neural Circuits 2019; 13:17. [PMID: 30930753 PMCID: PMC6428770 DOI: 10.3389/fncir.2019.00017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/28/2019] [Indexed: 01/24/2023] Open
Abstract
Parkinson’s disease (PD) is the most common neurodegenerative movement disorder that results from the progressive degeneration of substantia nigra pars compacta (SNc) dopamine (DA) neurons. As a consequence of SNc degeneration, the striatum undergoes DA depletion causing the emergence of motor symptoms such as resting tremor, bradykinesia, postural instability and rigidity. The primary cell type in the striatum is the spiny projection neuron (SPN), which can be divided into two subpopulations, the direct and indirect pathway; the direct pathway innervates the substantia nigra pars reticulata and internal segment of the globus pallidus whereas the indirect pathway innervates the external segment of the globus pallidus. Proper control of movement requires a delicate balance between the two pathways; in PD dysfunction occurs in both cell types and impairments in synaptic plasticity are found in transgenic and toxin rodent models of PD. However, it is difficult to ascertain how the striatum adapts during different stages of PD, particularly during premotor stages. In the natural evolution of PD, patients experience years of degeneration before motor symptoms arise. To model premotor PD, partial lesion rodents and transgenic mice demonstrating progressive nigral degeneration have been and will continue to be assets to the field. Although, rodent models emulating premotor PD are not fully asymptomatic; modest reductions in striatal DA result in cognitive impairments. This mini review article gives a brief summary of SPN dynamics in animal models of PD.
Collapse
Affiliation(s)
- Yijuan Du
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| | - Steven M Graves
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|