1
|
Davutoglu MG, Geyer VF, Niese L, Soltwedel JR, Zoccoler ML, Sabatino V, Haase R, Kröger N, Diez S, Poulsen N. Gliding motility of the diatom Craspedostauros australis coincides with the intracellular movement of raphid-specific myosins. Commun Biol 2024; 7:1187. [PMID: 39313522 PMCID: PMC11420354 DOI: 10.1038/s42003-024-06889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/12/2024] [Indexed: 09/25/2024] Open
Abstract
Raphid diatoms are one of the few eukaryotes capable of gliding motility, which is remarkably fast and allows for quasi-instantaneous directional reversals. Besides other mechanistic models, it has been suggested that an actomyosin system provides the force for diatom gliding. However, in vivo data on the dynamics of actin and myosin in diatoms are lacking. In this study, we demonstrate that the raphe-associated actin bundles required for diatom movement do not exhibit a directional turnover of subunits and thus their dynamics do not contribute directly to force generation. By phylogenomic analysis, we identified four raphid diatom-specific myosins in Craspedostauros australis (CaMyo51A-D) and investigated their in vivo localization and dynamics through GFP-tagging. Only CaMyo51B-D but not CaMyo51A exhibited coordinated movement during gliding, consistent with a role in force generation. The characterization of raphid diatom-specific myosins lays the foundation for unraveling the molecular mechanisms that underlie the gliding motility of diatoms.
Collapse
Affiliation(s)
- Metin G Davutoglu
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Veikko F Geyer
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Lukas Niese
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Johannes R Soltwedel
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Marcelo L Zoccoler
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
| | - Valeria Sabatino
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
| | - Robert Haase
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Center for Scalable Data Analytics and Artificial Intelligence, Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Nils Kröger
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany
- Faculty of Chemistry and Food Chemistry, TUD Dresden University of Technology, Dresden, Germany
| | - Stefan Diez
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
- Cluster of Excellence Physics of Life, TUD Dresden University of Technology, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Nicole Poulsen
- B CUBE - Center for Molecular Bioengineering, TUD Dresden University of Technology, Dresden, Germany.
| |
Collapse
|
2
|
Zheng P, Kumadaki K, Quek C, Lim ZH, Ashenafi Y, Yip ZT, Newby J, Alverson AJ, Jie Y, Jedd G. Cooperative motility, force generation and mechanosensing in a foraging non-photosynthetic diatom. Open Biol 2023; 13:230148. [PMID: 37788707 PMCID: PMC10547550 DOI: 10.1098/rsob.230148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Diatoms are ancestrally photosynthetic microalgae. However, some underwent a major evolutionary transition, losing photosynthesis to become obligate heterotrophs. The molecular and physiological basis for this transition is unclear. Here, we isolate and characterize new strains of non-photosynthetic diatoms from the coastal waters of Singapore. These diatoms occupy diverse ecological niches and display glucose-mediated catabolite repression, a classical feature of bacterial and fungal heterotrophs. Live-cell imaging reveals deposition of secreted extracellular polymeric substance (EPS). Diatoms moving on pre-existing EPS trails (runners) move faster than those laying new trails (blazers). This leads to cell-to-cell coupling where runners can push blazers to make them move faster. Calibrated micropipettes measure substantial single-cell pushing forces, which are consistent with high-order myosin motor cooperativity. Collisions that impede forward motion induce reversal, revealing navigation-related force sensing. Together, these data identify aspects of metabolism and motility that are likely to promote and underpin diatom heterotrophy.
Collapse
Affiliation(s)
- Peng Zheng
- Temasek Life Sciences Laboratory, 117604 Singapore
| | - Kayo Kumadaki
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | | | - Zeng Hao Lim
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Yonatan Ashenafi
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Zhi Ting Yip
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| | - Jay Newby
- Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2G1
| | - Andrew J. Alverson
- Department of Biological Sciences, University of Arkansas, SCEN 601, Fayetteville, AR 72701, USA
| | - Yan Jie
- Department of Physics, National University of Singapore, 117542 Singapore
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Gregory Jedd
- Temasek Life Sciences Laboratory, 117604 Singapore
- Department of Biological Sciences, National University of Singapore, 117543 Singapore, Singapore
| |
Collapse
|
3
|
Miyata M, Robinson RC, Uyeda TQP, Fukumori Y, Fukushima SI, Haruta S, Homma M, Inaba K, Ito M, Kaito C, Kato K, Kenri T, Kinosita Y, Kojima S, Minamino T, Mori H, Nakamura S, Nakane D, Nakayama K, Nishiyama M, Shibata S, Shimabukuro K, Tamakoshi M, Taoka A, Tashiro Y, Tulum I, Wada H, Wakabayashi KI. Tree of motility - A proposed history of motility systems in the tree of life. Genes Cells 2020; 25:6-21. [PMID: 31957229 PMCID: PMC7004002 DOI: 10.1111/gtc.12737] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 12/27/2022]
Abstract
Motility often plays a decisive role in the survival of species. Five systems of motility have been studied in depth: those propelled by bacterial flagella, eukaryotic actin polymerization and the eukaryotic motor proteins myosin, kinesin and dynein. However, many organisms exhibit surprisingly diverse motilities, and advances in genomics, molecular biology and imaging have showed that those motilities have inherently independent mechanisms. This makes defining the breadth of motility nontrivial, because novel motilities may be driven by unknown mechanisms. Here, we classify the known motilities based on the unique classes of movement‐producing protein architectures. Based on this criterion, the current total of independent motility systems stands at 18 types. In this perspective, we discuss these modes of motility relative to the latest phylogenetic Tree of Life and propose a history of motility. During the ~4 billion years since the emergence of life, motility arose in Bacteria with flagella and pili, and in Archaea with archaella. Newer modes of motility became possible in Eukarya with changes to the cell envelope. Presence or absence of a peptidoglycan layer, the acquisition of robust membrane dynamics, the enlargement of cells and environmental opportunities likely provided the context for the (co)evolution of novel types of motility.
Collapse
Affiliation(s)
- Makoto Miyata
- Department of Biology, Graduate School of Science, Osaka City University, Osaka, Japan.,The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science, Okayama University, Okayama, Japan.,School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Taro Q P Uyeda
- Department of Physics, Faculty of Science and Technology, Waseda University, Tokyo, Japan
| | - Yoshihiro Fukumori
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Shun-Ichi Fukushima
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Shin Haruta
- Department of Biological Sciences, Graduate School of Science and Engineering, Tokyo Metropolitan University, Tokyo, Japan
| | - Michio Homma
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka, Japan
| | - Masahiro Ito
- Graduate School of Life Sciences, Toyo University, Gunma, Japan
| | - Chikara Kaito
- Laboratory of Microbiology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kentaro Kato
- Laboratory of Sustainable Animal Environment, Graduate School of Agricultural Science, Tohoku University, Miyagi, Japan
| | - Tsuyoshi Kenri
- Laboratory of Mycoplasmas and Haemophilus, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Seiji Kojima
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Tohru Minamino
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Hiroyuki Mori
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - Shuichi Nakamura
- Department of Applied Physics, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Daisuke Nakane
- Department of Physics, Gakushuin University, Tokyo, Japan
| | - Koji Nakayama
- Department of Microbiology and Oral Infection, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Masayoshi Nishiyama
- Department of Physics, Faculty of Science and Engineering, Kindai University, Osaka, Japan
| | - Satoshi Shibata
- Molecular Cryo-Electron Microscopy Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuya Shimabukuro
- Department of Chemical and Biological Engineering, National Institute of Technology, Ube College, Yamaguchi, Japan
| | - Masatada Tamakoshi
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Azuma Taoka
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Kanazawa, Japan.,WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa, Japan
| | - Yosuke Tashiro
- Department of Engineering, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Isil Tulum
- Department of Botany, Faculty of Science, Istanbul University, Istanbul, Turkey
| | - Hirofumi Wada
- Department of Physics, Graduate School of Science and Engineering, Ritsumeikan University, Shiga, Japan
| | - Ken-Ichi Wakabayashi
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|