1
|
Tanaka N, Fujita T, Takahashi Y, Yamasaki J, Murata K, Arai S. Progress in environmental high-voltage transmission electron microscopy for nanomaterials. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190602. [PMID: 33100163 DOI: 10.1098/rsta.2019.0602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
A new environmental high-voltage transmission electron microscope (E-HVEM) was developed by Nagoya University in collaboration with JEOL Ltd. An open-type environmental cell was employed to enable in-situ observations of chemical reactions on catalyst particles as well as mechanical deformation in gaseous conditions. One of the reasons for success was the application of high-voltage transmission electron microscopy to environmental (in-situ) observations in the gas atmosphere because of high transmission of electrons through gas layers and thick samples. Knock-on damages to samples by high-energy electrons were carefully considered. In this paper, we describe the detailed design of the E-HVEM, recent developments and various applications. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Nobuo Tanaka
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
- Nano-structure Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| | - Takeshi Fujita
- School of Environmental Science and Engineering, Kochi University of Technology, Kochi 782-8502, Japan
| | - Yoshimasa Takahashi
- Department of Mechanical Engineering, Kansai University, Suita 564-8680, Japan
| | - Jun Yamasaki
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki 567-0047, Japan
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Shigeo Arai
- Institute of Materials and Systems for Sustainability (IMaSS), Nagoya University, Nagoya 464-8603, Japan
- Nano-structure Laboratory, Japan Fine Ceramics Center, Nagoya 456-8587, Japan
| |
Collapse
|
2
|
Naya M, Sato C. Pyrene Excimer-Based Fluorescent Labeling of Cysteines Brought into Close Proximity by Protein Dynamics: ASEM-Induced Thiol-Ene Click Reaction for High Spatial Resolution CLEM. Int J Mol Sci 2020; 21:E7550. [PMID: 33066147 PMCID: PMC7589919 DOI: 10.3390/ijms21207550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/16/2022] Open
Abstract
Fluorescence microscopy (FM) has revealed vital molecular mechanisms of life. Mainly, molecules labeled by fluorescent probes are imaged. However, the diversity of labeling probes and their functions remain limited. We synthesized a pyrene-based fluorescent probe targeting SH groups, which are important for protein folding and oxidative stress sensing in cells. The labeling achieved employs thiol-ene click reactions between the probes and SH groups and is triggered by irradiation by UV light or an electron beam. When two tagged pyrene groups were close enough to be excited as a dimer (excimer), they showed red-shifted fluorescence; theoretically, the proximity of two SH residues within ~30 Å can thus be monitored. Moreover, correlative light/electron microscopy (CLEM) was achieved using our atmospheric scanning electron microscope (ASEM); radicals formed in liquid by the electron beam caused the thiol-ene click reactions, and excimer fluorescence of the labeled proteins in cells and tissues was visualized by FM. Since the fluorescent labeling is induced by a narrow electron beam, high spatial resolution labeling is expected. The method can be widely applied to biological fields, for example, to study protein dynamics with or without cysteine mutagenesis, and to beam-induced micro-fabrication and the precise post-modification of materials.
Collapse
Affiliation(s)
- Masami Naya
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
| | - Chikara Sato
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan;
- Master’s and Doctoral Programs in Neuroscience, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8574, Japan
| |
Collapse
|
3
|
Ito C, Akutsu H, Yao R, Yoshida K, Yamatoya K, Mutoh T, Makino T, Aoyama K, Ishikawa H, Kunimoto K, Tsukita S, Noda T, Kikkawa M, Toshimori K. Odf2 haploinsufficiency causes a new type of decapitated and decaudated spermatozoa, Odf2-DDS, in mice. Sci Rep 2019; 9:14249. [PMID: 31582806 PMCID: PMC6776547 DOI: 10.1038/s41598-019-50516-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Outer dense fibre 2 (Odf2 or ODF2) is a cytoskeletal protein required for flagella (tail)-beating and stability to transport sperm cells from testes to the eggs. There are infertile males, including human patients, who have a high percentage of decapitated and decaudated spermatozoa (DDS), whose semen contains abnormal spermatozoa with tailless heads and headless tails due to head-neck separation. DDS is untreatable in reproductive medicine. We report for the first time a new type of Odf2-DDS in heterozygous mutant Odf2+/- mice. Odf2+/- males were infertile due to haploinsufficiency caused by heterozygous deletion of the Odf2 gene, encoding the Odf2 proteins. Odf2 haploinsufficiency induced sperm neck-midpiece separation, a new type of head-tail separation, leading to the generation of headneck sperm cells or headnecks composed of heads with necks and neckless tails composed of only the main parts of tails. The headnecks were immotile but alive and capable of producing offspring by intracytoplasmic headneck sperm injection (ICSI). The neckless tails were motile and could induce capacitation but had no significant forward motility. Further studies are necessary to show that ICSI in humans, using headneck sperm cells, is viable and could be an alternative for infertile patients suffering from Odf2-DDS.
Collapse
Affiliation(s)
- Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
| | - Hidenori Akutsu
- Department of Reproductive Medicine, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ryoji Yao
- Department of Cell Biology, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Keiichi Yoshida
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Next-generation Development Center for Cancer Treatment, Osaka International Cancer Institute, Osaka, 541-8567, Japan
| | - Kenji Yamatoya
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
- Institute for Environmental & Gender-specific Medicine, Juntendo University Graduate School of Medicine, Chiba, 279-0021, Japan
| | - Tohru Mutoh
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan
| | - Tsukasa Makino
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis (ex FEI), Thermo Ficher Scientific, Shinagawa Seaside West Tower 1F, 4-12-2 HigashiSinagawa, Shinagawa-ku, Tokyo, 140-0002, Japan
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, 7-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Hiroaki Ishikawa
- Department of Biochemistry and Biophysics, University of California San Francisco 600 16th St., San Francisco, CA, 94143, USA
| | - Koshi Kunimoto
- Department of Pathology, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305, USA
| | - Sachiko Tsukita
- Graduate School of Frontier Biosciences and Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Tetsuo Noda
- Director's Room, Japanese Foundation for Cancer Research (JFCR) Cancer Institute, Tokyo, 135-8550, Japan
| | - Masahide Kikkawa
- Department of Cell Biology and Anatomy, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, 260-8670, Japan.
- Future Medicine Research Center, Chiba University, Chiba, 260-8670, Japan.
| |
Collapse
|
4
|
Okamoto K, Miyazaki N, Song C, Maia FRNC, Reddy HKN, Abergel C, Claverie JM, Hajdu J, Svenda M, Murata K. Structural variability and complexity of the giant Pithovirus sibericum particle revealed by high-voltage electron cryo-tomography and energy-filtered electron cryo-microscopy. Sci Rep 2017; 7:13291. [PMID: 29038566 PMCID: PMC5643343 DOI: 10.1038/s41598-017-13390-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022] Open
Abstract
The Pithoviridae giant virus family exhibits the largest viral particle known so far, a prolate spheroid up to 2.5 μm in length and 0.9 μm in diameter. These particles show significant variations in size. Little is known about the structure of the intact virion due to technical limitations with conventional electron cryo-microscopy (cryo-EM) when imaging thick specimens. Here we present the intact structure of the giant Pithovirus sibericum particle at near native conditions using high-voltage electron cryo-tomography (cryo-ET) and energy-filtered cryo-EM. We detected a previously undescribed low-density outer layer covering the tegument and a periodical structuring of the fibres in the striated apical cork. Energy-filtered Zernike phase-contrast cryo-EM images show distinct substructures inside the particles, implicating an internal compartmentalisation. The density of the interior volume of Pithovirus particles is three quarters lower than that of the Mimivirus. However, it is remarkably high given that the 600 kbp Pithovirus genome is only half the size of the Mimivirus genome and is packaged in a volume up to 100 times larger. These observations suggest that the interior is densely packed with macromolecules in addition to the genomic nucleic acid.
Collapse
Affiliation(s)
- Kenta Okamoto
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.
| | - Naoyuki Miyazaki
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan
| | - Chihong Song
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan
| | - Filipe R N C Maia
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Hemanth K N Reddy
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Chantal Abergel
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, Marseille, 13288, France
| | - Jean-Michel Claverie
- Structural and Genomic Information Laboratory, UMR 7256 (IMM FR 3479) Centre National de la Recherche Scientifique & Aix-Marseille University, Marseille, 13288, France.,Assistance Publique des Hôpitaux de Marseille. La Timone, 13005, Marseille, France
| | - Janos Hajdu
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden.,Institute of Physics AS CR, v.v.i., Na Slovance 2, 18221, Prague 8, Czech Republic
| | - Martin Svenda
- Laboratory of Molecular Biophysics, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3 (Box 596), SE-75124, Uppsala, Sweden
| | - Kazuyoshi Murata
- National Institute for Physiological Sciences (NIPS), Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|