1
|
Cavalcante GRG, Moreno MC, Pirih FQ, Soares VDP, Silveira ÉJDD, Silva JSPD, Pereira HSG, Klein KP, Lopes MLDDS, Araujo AAD, Martins AA, Lins RDAU. Thermogenic preworkout supplement induces alveolar bone loss in a rat model of tooth movement via RANK/RANKL/OPG pathway. Braz Oral Res 2024; 38:e131. [PMID: 39775419 DOI: 10.1590/1807-3107bor-2024.vol38.0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/13/2024] [Indexed: 01/11/2025] Open
Abstract
The aim of this study was to investigate the effect of thermogenic supplementation on the bone tissue of rats subjected to orthodontic movement. A total of 38 male Wistar rats underwent orthodontic movement of the left permanent maxillary first molars for 21 days. The rats were assigned to three groups: Control group: water; Thermogenic 1: C4 Beta Pump thermogenic; or Thermogenic 2: PRE-HD/Pre-workout. Micro-computed tomography (micro-CT) was used to investigate the dynamic changes in the microstructure of alveolar bone during orthodontic tooth movement in rats. Histopathologic analysis was performed by hematoxylin and eosin (H&E) staining, whereas tartrate-resistant acid phosphatase (TRAP) was employed for osteoclast count. Maxillary tissue was collected and evaluated by immunohistochemistry for receptor activator of NF-κB (RANK), receptor activator of NF-κB ligand (RANKL), and osteoprotegerin (OPG). The Thermogenic 2 group exhibited a significantly lower percentage of bone volume fraction (BV/TV) (68.21% ± 17.70%) compared to the control (86.84% + 12.91%) and Thermogenic 1 groups (86.84% + 15.94%) (p < 0.05). The control group had a significantly higher mean orthodontic movement in the mesial direction (0.2143 mm + 0.1513 mm) than the Thermogenic 2 group (0.0420 mm + 0.05215 mm) (p < 0.05). The Thermogenic 2 and Thermogenic 1 groups showed a stronger immunostaining for RANKL when compared to the control group (p < 0.05). The supplementation used in the Thermogenic 2 group (PRE-HD/Pre-workout) induced alveolar bone loss in rats subjected to orthodontic movement, which can be related to the regulation of the RANK/RANKL/OPG signaling pathway. This suggests the influence of thermogenic supplements on bone metabolism seems to depend on their composition.
Collapse
Affiliation(s)
| | - Mariana Cabral Moreno
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | | - Vanessa de Paula Soares
- Universidade Federal do Rio Grande do Norte - UFRN, Department of Biophysical and Pharmacology, Natal, RN, Brazil
| | | | - José Sandro Pereira da Silva
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | | | | | | - Aurigena Antunes de Araujo
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | - Agnes Andrade Martins
- Universidade Federal do Rio Grande do Norte - UFRN, Graduate Program in Dental Sciences, Department of Dentistry, Natal, Brazil
| | | |
Collapse
|
2
|
Kanda T, Iwasaki K, Taguchi Y, Umeda M. Role of sodium-dependent vitamin C transporter 2 in human periodontal ligament fibroblasts. J Periodontal Res 2024. [PMID: 39225294 DOI: 10.1111/jre.13322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 09/04/2024]
Abstract
AIM Ascorbic acid (AA) is a water-soluble vitamin that has antioxidant properties and regulates homeostasis of connective tissue through controlling various enzymatic activities. Two cell surface glycoproteins, sodium-dependent vitamin C transporter (SVCT) 1 and SVCT2, are known as ascorbate transporters. The purpose of this study was to investigate the expression pattern and functions of SVCTs in periodontal ligament (PDL) and PDL fibroblast (PDLF). METHODS Gene expression was examined using real-time polymerase chain reaction (PCR) and reverse transcription PCR. SVCT2 expression was determined by immunofluorescence staining, western blot and flow cytometry. ALP activity and collagen production were examined using ALP staining and collagen staining. Short interfering RNA was used to knock down the gene level of SVCT2. Change of comprehensive gene expression under SVCT2 knockdown condition was examined by RNA-sequencing analysis. RESULTS Real-time PCR, fluorescent immunostaining, western blot and flowy cytometry showed that SVCT2 was expressed in PDLF and PDL. ALP activity, collagen production, and SVCT2 expression were enhanced upon AA stimulation in PDLF. The enhancement of ALP activity, collagen production, and SVCT2 expression by AA was abolished under SVCT2 knockdown condition. RNA-sequencing revealed that gene expression of CLDN4, Cyclin E2, CAMK4, MSH5, DMC1, and Nidgen2 were changed by SVCT2 knockdown. Among them, the expression of MSH5 and DMC1, which are related to DNA damage sensor activity, was enhanced by AA, suggesting the new molecular target of AA in PDLF. CONCLUSION Our study reveals the SVCT2 expression in PDL and the pivotal role of SVCT2 in mediating AA-induced enhancements of ALP activity and collagen production in PDLF. Additionally, we identify alterations in gene expression profiles, highlighting potential molecular targets influenced by AA through SVCT2. These findings deepen our understanding of periodontal tissue homeostasis mechanisms and suggest promising intervention targeting AA metabolism.
Collapse
Affiliation(s)
- Tomoko Kanda
- Graduate School of Dentistry (Department of Periodontology), Osaka Dental University, Osaka, Japan
| | - Kengo Iwasaki
- Division of Creative and Integrated Medicine, Advanced Medicine Research Center, Translational Research Institute for Medical Innovation (TRIMI), Osaka Dental University, Osaka, Japan
| | - Yoichiro Taguchi
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| | - Makoto Umeda
- Department of Periodontology, Osaka Dental University, Osaka, Japan
| |
Collapse
|
3
|
Yamamoto T, Maruoka H, Hongo H, Yoshino H, Haraguchi-Kitakamae M, Liu X, Yao Q, Li M, Amizuka N, Hasegawa T. Early gene expression profiles of anabolic and catabolic molecules in murine bone after a single PTH injection. J Oral Biosci 2023; 65:395-400. [PMID: 37595743 DOI: 10.1016/j.job.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/20/2023]
Abstract
The current study examined the gene expression profiles of anabolic and catabolic molecules after a single parathyroid hormone (PTH) injection in mice. No significant changes were observed in alkaline phosphatase area/tissue volume, tartrate-resistant acid phosphatase-positive osteoclasts, or static bone histomorphometry parameters. However, a sudden and significant decrease in Runx2 expression occurred at 1.5 h post-injection followed by immediate elevation, while sclerostin level was initially downregulated but gradually recovered. Meanwhile, Rankl expression initially increased and then returned to baseline. The prolonged elevation of anabolic molecules and transient increase in catabolic molecules may contribute to the anabolic effect of PTH treatment.
Collapse
Affiliation(s)
- Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Xuanyu Liu
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Qi Yao
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Minqi Li
- Center of Osteoporosis and Bone Mineral Research, Department of Bone Metabolism, School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, And Faculty of Dental Medicine, Hokkaido University, Japan.
| |
Collapse
|
4
|
Muneyama T, Hasegawa T, Yamamoto T, Hongo H, Haraguchi-Kitakamae M, Abe M, Maruoka H, Ishizu H, Shimizu T, Sasano Y, Li M, Amizuka N. Histochemical assessment on osteoclasts in long bones of toll-like receptor 2 (TLR2) deficient mice. J Oral Biosci 2023; 65:163-174. [PMID: 37088152 DOI: 10.1016/j.job.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/25/2023]
Abstract
OBJECTIVE Toll-like receptor 2 (TLR2), recognizes a wide variety of pathogen-associated molecular patterns such as lipopolysaccharides, peptidoglycans, and lipopeptides, and is generally believed to be present in monocytes, macrophages, dendritic cells, and vascular endothelial cells. However, no histological examination of osteoclasts, which differentiate from precursors common to macrophages/monocytes, has been performed in a non-infected state of TLR2 deficiency. The objective of this study was to examine the histological properties and function of osteoclasts in the long bones of 8-week-old male TLR2 deficient (TLR2-/-) mice to gain insight into TLR2 function in biological circumstances without microbial infection. METHODS Eight-week-old male wild-type and TLR2-/- mice were fixed with paraformaldehyde solution, and their tibiae and femora were used for micro-CT analysis, immunohistochemistry, transmission electron microscopy, and real-time PCR analysis. RESULTS TLR2-/- tibiae and femora exhibited increased bone volume of metaphyseal trabeculae and elevated numbers of TRAP-positive osteoclasts. However, the number of multinucleated TRAP-positive osteoclasts was reduced, whereas mononuclear TRAP-positive cells increased, despite the high expression levels of Dc-Stamp and Oc-Stamp. Although TRAP-positive multinucleated and mononuclear osteoclasts showed the immunoreactivity and elevated expression of RANK and siglec-15, they revealed weak cathepsin K-positivity and less incorporation of the mineralized bone matrix, and often missing ruffled borders. It seemed likely that, despite the increased numbers, TLR2-/- osteoclasts reduced cell fusion and bone resorption activity. CONCLUSION It seems likely that even without bacterial infection, TLR2 might participate in cell fusion and subsequent bone resorption of osteoclasts.
Collapse
Affiliation(s)
- Takafumi Muneyama
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Haruhi Maruoka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Hotaka Ishizu
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan; Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Tomohiro Shimizu
- Orthopedics, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuyuki Sasano
- Division of Craniofacial Development and Tissue Biology, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| | - Norio Amizuka
- Developmental Biology of Hard Tissue Graduate School of Dental Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
5
|
Huangfu C, Tang N, Yang X, Gong Z, Li J, Jia J, Zhang J, Huang Y, Ma Y. Improvement of irradiation-induced fibroblast damage by α2-macroglobulin through alleviating mitochondrial dysfunction. PHARMACEUTICAL BIOLOGY 2022; 60:1365-1373. [PMID: 35881053 PMCID: PMC9336502 DOI: 10.1080/13880209.2022.2096077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/02/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT α2-Macroglobulin (α2-M) is believed to be a potential anti-irradiation agent, but related mechanisms remains unclear. OBJECTIVE We investigated the irradiation protective effect of α2-M. MATERIALS AND METHODS A total of 10 Gy dose of irradiation was used to damage human skin fibroblasts. The influence of α2-M (100 µg/mL) on the proliferation, migration, invasion and apoptosis of fibroblasts was observed using Cell Counting Kit-8 (CCK8), wound healing, transwell, and flow cytometry. Malondialdehyde, superoxide dismutase and catalase was measured using related ELISA kits. The levels of mitochondrial membrane potential and calcium were detected using flow cytometry. The expression of transient receptor potential melastatin 2 (TRPM2) was investigated through western blotting and immunofluorescence staining. RESULTS High purity of α2-M was isolated from Cohn fraction IV. α2-M significantly increased cell proliferation, migration, invasion, but suppressed cell apoptosis after irradiation. The promotion of cell proliferation, migration and invasion by α2-M exceeded over 50% compared group irradiation. The increased cell ratio in the S phase and decreased cell ratio in the G2 phase induced by irradiation were remarkably reversed by α2-M. α2-M markedly suppressed the increased oxidative stress level caused by irradiation. The mitochondrial damage induced by irradiation was improved by α2-M through inhibiting mitochondrial membrane potential loss, calcium and TRPM2 expression. DISCUSSION AND CONCLUSIONS α2-M significantly promoted the decreased fibroblast viability and improved the mitochondria dysfunction caused by irradiation. α2-M might present anti-radiation effect through alleviating mitochondrial dysfunction caused by irradiation. This study could provide a novel understanding about the improvement of α2-M on irradiation-induced injury.
Collapse
Affiliation(s)
- Chaoji Huangfu
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Nan Tang
- School of Nursing, Lanzhou University, Lanzhou, PR China
| | - Xiaokun Yang
- Department of Emergency Medicine, The General Hospital of Western Theater Command, Chengdu, PR China
| | - Zhanwei Gong
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Junzheng Li
- Center for Disease Control and Prevention, Western Theater Command, Lanzhou, PR China
| | - Junting Jia
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | - Jingang Zhang
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| | - Yan Huang
- Department of Neurology, Chengdu Third People’s Hospital, Chengdu, PR China
| | - Yuyuan Ma
- NMPA Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, PR China
| |
Collapse
|
6
|
Moritani Y, Hasegawa T, Yamamoto T, Hongo H, Yimin, Abe M, Yoshino H, Nakanishi K, Maruoka H, Ishizu H, Shimizu T, Takahata M, Iwasaki N, Li M, Tei K, Ohiro Y, Amizuka N. Histochemical assessment of accelerated bone remodeling and reduced mineralization in Il-6 deficient mice. J Oral Biosci 2022; 64:410-421. [DOI: 10.1016/j.job.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
7
|
Hongo H, Yokoyama A, Yamada-Sekiguchi T, Yamamoto T, Yoshino H, Abe M, Haraguchi-Kitakamae M, Luiz de Freitas PH, Hasegawa T, Li M. Histochemical assessment on osteocytic osteolysis in lactating mice fed with a calcium-insufficient diet. J Oral Biosci 2022; 64:422-430. [PMID: 36152933 DOI: 10.1016/j.job.2022.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/13/2022] [Accepted: 09/08/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVES This study aimed to examine if feeding lactating mice a calcium-insufficient diet while simultaneously administering alendronate (ALN) could potentially induce osteocytic osteolysis. METHODS Lactating mice were fed calcium (Ca)-insufficient diets with or without ALN administration, and then their femurs were examined for TRAP and ALP, and observed by Kossa staining and transmission electron microscopy (TEM). Mice that had been fed a Ca-insufficient diet were then fed a 44Ca-containinig diet, and their tibial sections were examined by isotope microscopy. RESULTS Mice fed a Ca-insufficient diet had a reduced number of TRAP-positive osteoclasts after ALN administration. ALN-treated, lactating mice fed a Ca-insufficient diet had enlarged lacunae in their cortical bones, and TEM imaging demonstrated expanded regions between osteocytes and lacunar walls. In ALN-treated lactating mice fed a Ca-insufficient diet, huge areas of demineralized bone matrix occurred, centered around blood vessels in the cortical bone. Isotope microscopy showed 44Ca in the vicinity of the osteocytic lacunae, and in the broad, previously demineralized region around the blood vessels in the cortical bone of lactating mice fed a 44Ca-sufficient diet. CONCLUSIONS Bone demineralization likely takes place in the periphery of the osteocytic lacunae and in the broad regions around the blood vessels of lactating mice when they are exposed to severely reduced serum Ca through a Ca-insufficient diet coupled with ALN administration.
Collapse
Affiliation(s)
- Hiromi Hongo
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Ayako Yokoyama
- Gerontology, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tamaki Yamada-Sekiguchi
- Oral and Maxillofacial Surgery, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Tomomaya Yamamoto
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Northern Army Medical Unit, Camp Makomanai, Japan Ground Self-Defense Forces, Sapporo, Japan
| | - Hirona Yoshino
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan
| | - Mai Haraguchi-Kitakamae
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan; Division of Craniofacial Development and Tissue Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | | | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine and Faculty of Dental Medicine, Hokkaido University, Sapporo, Japan.
| | - Minqi Li
- Shandong Provincial Key Laboratory of Oral Biomedicine, The School of Stomatology, Shandong University, Jinan, China
| |
Collapse
|
8
|
Tsuchiya E, Hasegawa T, Hongo H, Yamamoto T, Abe M, Yoshida T, Zhao S, Tsuboi K, Udagawa N, Henrique Luiz de Freitas P, Li M, Kitagawa Y, Amizuka N. Histochemical assessment on the cellular interplay of vascular endothelial cells and septoclasts during endochondral ossification in mice. Microscopy (Oxf) 2021; 70:201-214. [PMID: 32816022 DOI: 10.1093/jmicro/dfaa047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/02/2020] [Accepted: 08/07/2020] [Indexed: 11/12/2022] Open
Abstract
This study was aimed to verify the cellular interplay between vascular endothelial cells and surrounding cells in the chondro-osseous junction of murine tibiae. Many CD31-positive endothelial cells accompanied with Dolichos Biflorus Agglutinin lectin-positive septoclasts invaded into the hypertrophic zone of the tibial epiphyseal cartilage. MMP9 immunoreactive cytoplasmic processes of vascular endothelial cells extended into the transverse partitions of cartilage columns. In contrast, septoclasts included several large lysosomes which indicate the incorporation of extracellular matrices despite no immunopositivity for F4/80-a hallmark of macrophage/monocyte lineage. In addition, septoclasts were observed in c-fos-/- mice but not in Rankl-/- mice. Unlike c-fos-/- mice, Rankl-/- mice showed markedly expanded hypertrophic zone and the irregular shape of the chondro-osseous junction. Immunoreactivity of platelet-derived growth factor-bb, which involved in angiogenic roles in the bone, was detected in not only osteoclasts but also septoclasts at the chondro-osseous junction. Therefore, septoclasts appear to assist the synchronous vascular invasion of endothelial cells at the chondro-osseous junction. Vascular endothelial cells adjacent to the chondro-osseous junction possess endomucin but not EphB4, whereas those slightly distant from the chondro-osseous junction were intensely positive for both endomucin and EphB4, while being accompanied with ephrinB2-positive osteoblasts. Taken together, it is likely that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. MINI-ABSTRACT Our original article demonstrated that vascular endothelial cells adjacent to the chondro-osseous junction would interplay with septoclasts for synchronous invasion into the epiphyseal cartilage, while those slightly distant from the chondro-osseous junction would cooperate with osteoblastic activities presumably by mediating EphB4/ephrinB2. (A figure that best represents your paper is Fig. 5c).
Collapse
Affiliation(s)
- Erika Tsuchiya
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan.,Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Hiromi Hongo
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Tomomaya Yamamoto
- Department of Dentistry, Japan Ground Self-Defense Force Camp Asaka, Tokyo, Japan
| | - Miki Abe
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Taiji Yoshida
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Shen Zhao
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| | - Kanako Tsuboi
- Dental Surgery, Haibara General Hospital, Makinohara, Shizuoka, Japan
| | - Nobuyuki Udagawa
- Department of Oral Biochemistry, Matsumoto Dental University, Shiojiri, Nagano, Japan
| | | | - Minqi Li
- Division of Basic Science of Stomatology, The School of Stomatology, Shandong University, Jinan, Shandong, China
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Norio Amizuka
- Developmental Biology of Hard Tissue, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-Ku, Sapporo, Hokkaido, 060-8586, Japan
| |
Collapse
|