1
|
Emmery L, Hackney ME, Kesar T, McKay JL, Rosenberg MC. An integrated review of music cognition and rhythmic stimuli in sensorimotor neurocognition and neurorehabilitation. Ann N Y Acad Sci 2023; 1530:74-86. [PMID: 37917153 PMCID: PMC10841443 DOI: 10.1111/nyas.15079] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
This work reviews the growing body of interdisciplinary research on music cognition, using biomechanical, kinesiological, clinical, psychosocial, and sociological methods. The review primarily examines the relationship between temporal elements in music and motor responses under varying contexts, with considerable relevance for clinical rehabilitation. After providing an overview of the terminology and approaches pertinent to theories of rhythm and meter from the musical-theoretical and cognitive fields, this review focuses on studies on the effects of rhythmic sensory stimulation on gait, rhythmic cues' effect on the motor system, reactions to rhythmic stimuli attempting to synchronize mobility (i.e., musical embodiment), and the application of rhythm for motor rehabilitation for individuals with Parkinson's disease, stroke, mild cognitive impairment, Alzheimer's disease, and other neurodegenerative or neurotraumatic diseases. This work ultimately bridges the gap between the musical-theoretical and cognitive science fields to facilitate innovative research in which each discipline informs the other.
Collapse
Affiliation(s)
- Laura Emmery
- Department of Music, Emory College of Arts and Sciences, Emory University, Atlanta, Georgia, USA
| | - Madeleine E. Hackney
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA HealthCare System, Decatur, Georgia, USA
- Department of Medicine, Division of Geriatrics and Gerontology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Veterans Affairs Birmingham/Atlanta Geriatric Research Education and Clinical Center
- Department of Rehabilitation Medicine, Division of Physical Therapy, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory University School of Nursing, Atlanta, Georgia, USA
| | - Trisha Kesar
- Department of Rehabilitation Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| | - J. Lucas McKay
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Michael C. Rosenberg
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
2
|
Pang TY, Feltham F. Effect of continuous auditory feedback (CAF) on human movements and motion awareness. Med Eng Phys 2022; 109:103902. [DOI: 10.1016/j.medengphy.2022.103902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
3
|
Ready EA, Holmes JD, Grahn JA. Gait in younger and older adults during rhythmic auditory stimulation is influenced by groove, familiarity, beat perception, and synchronization demands. Hum Mov Sci 2022; 84:102972. [PMID: 35763974 DOI: 10.1016/j.humov.2022.102972] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Music-based Rhythmic auditory stimulation (RAS) is a cueing intervention used to regulate gait impairments in conditions such as Parkinson's disease or stroke. Desire to move with music ('groove') and familiarity have been shown to impact younger adult gait while walking with music, and these effects appear to be influenced by individual rhythmic ability. Importantly, these factors have not been examined in older adults. The aim of this study was to determine how gait outcomes during RAS are influenced by musical properties (familiarity, 'groove') in both free and synchronized walking for younger and older adults with good and poor beat perception ability. To do this, participants were randomized to either free or synchronized walking groups. Each participant's gait was assessed on a pressure sensitive walkway during high versus low groove and high versus low familiarity music, as well as metronome, cueing trials. Individual beat perception ability was evaluated using the Beat Alignment Test. Results showed that the effects of synchronization and groove were mostly consistent across age groups. High groove music elicited faster gait in both age groups, with longer strides only among young adults, than low groove music; synchronizing maximized these effects. Older adults with poor beat perception were more negatively affected by unfamiliar stimuli while walking than younger adults. This suggests that older adults, like younger adults, may benefit from synchronized RAS to high groove cues but may be more vulnerable to cognitive demands associated with walking to unfamiliar stimuli. This should be accounted for in clinical implementations of RAS.
Collapse
Affiliation(s)
- Emily A Ready
- Department of Psychology, University of Western Ontario, Canada; Brain & Mind Institute, University of Western Ontario, Canada.
| | - Jeffrey D Holmes
- School of Occupational Therapy, University of Western Ontario, Canada.
| | - Jessica A Grahn
- Department of Psychology, University of Western Ontario, Canada; Brain & Mind Institute, University of Western Ontario, Canada.
| |
Collapse
|
4
|
De Bartolo D, De Giorgi C, Compagnucci L, Betti V, Antonucci G, Morone G, Paolucci S, Iosa M. Effects of cognitive workload on heart and locomotor rhythms coupling. Neurosci Lett 2021; 762:136140. [PMID: 34324958 DOI: 10.1016/j.neulet.2021.136140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/23/2021] [Indexed: 11/18/2022]
Abstract
Different physiological signals could be coupled under specific conditions, in some cases related to pathologies or reductions in system complexity. Cardiac-locomotor synchronization (CLS) has been one of the most investigating coupling. The influence of a cognitive task on walking was investigated in dual-task experiments, but how different cognitive tasks may influence CLS has poorly been investigated. Twenty healthy subjects performed a dual-task walking (coupled with verbal fluency vs calculation) on a treadmill at three different speeds (comfortable speed CS; fast-speed: CS + 2 km/h; slow-speed: CS-2 km/h) while cardiac and walking rhythms were recorded using surface electrodes and a triaxial accelerometer, respectively. According to previous studies, we found a cognitive-motor interference for which cognitive performance was affected by motor exercise, but not vice-versa. We found a CLS at the baseline condition, at fast speed in both cognitive tasks, while at comfortable speed only for the verbal fluency task. In conclusion, the cardiac and locomotor rhythms were not coupled at slow speed and at comfortable speed during subtraction task. Cognitive performances generally increased at faster speed, when cardiac locomotor coupling was stronger.
Collapse
Affiliation(s)
- Daniela De Bartolo
- Department of Psychology, Sapienza University of Rome, Italy; IRRCS Santa Lucia Foundation, Rome, Italy.
| | - Chiara De Giorgi
- Department of Psychology, Sapienza University of Rome, Italy; Braintrends Ltd, Rome, Italy
| | - Luca Compagnucci
- Department of Psychology, Sapienza University of Rome, Italy; Braintrends Ltd, Rome, Italy
| | - Viviana Betti
- Department of Psychology, Sapienza University of Rome, Italy; IRRCS Santa Lucia Foundation, Rome, Italy; Braintrends Ltd, Rome, Italy
| | - Gabriella Antonucci
- Department of Psychology, Sapienza University of Rome, Italy; IRRCS Santa Lucia Foundation, Rome, Italy
| | | | | | - Marco Iosa
- Department of Psychology, Sapienza University of Rome, Italy; IRRCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
5
|
Emmanouil A, Rousanoglou E, Georgaki A, Boudolos K. Concurrent Validity of Inertially Sensed Measures during Voluntary Body Sway in Silence and while Exposed to a Rhythmic Acoustic Stimulus: A Pilot Study. Digit Biomark 2021; 5:65-73. [PMID: 33977219 DOI: 10.1159/000514325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022] Open
Abstract
Introduction The effect of rhythmic acoustic stimuli on body sway is of increasing interest due to their positive contribution when training or restoring the control of movement. Inertial sensors show promise as a portable, easier, and more affordable method compared to the force plate "gold standard" concerning the evaluation of postural sway. This study examined the concurrent validity of inertially sensed measures of voluntary body sway against those obtained with a force plate, in silence and while exposed to a rhythmic acoustic stimulus. Methods Temporal (sway duration and variability) and spatial (trajectory length, variability, range, velocity, and area) body sway variables were extracted using an inertial sensor (at L5) in synchronization with a force plate, during anteroposterior body sway in silence and while exposed to a rhythmic acoustic stimulus (n = 18 young women; two 70-s trials in each condition). Statistics included bivariate correlations between the inertially sensed and the force plate measures, separately, in silence and with a rhythmic acoustic stimulus, as well as for the effect of the rhythmic acoustic stimulus (percentage difference from silence) (p ≤ 0.05, SPSS v25.0). Results The inertially sensed measures demonstrated good-to-excellent concurrent validity for all temporal and almost all spatial variables, both in silence and with rhythmic acoustic stimulus (r > 0.75, p = 0.000), as well as for the rhythmic acoustic-stimulus effect (r > 0.75, p ≤ 0.05). Conclusion The inertially sensed measures of the voluntary anteroposterior body sway demonstrated an overall good-to-excellent concurrent validity against those obtained with the force plate "gold standard," both in the silence and the rhythmic acoustic stimulus conditions, as well as for the rhythmic acoustic-stimulus effect. The findings of this pilot study allow the recommendation of inertial sensing for the evaluation of postural control alterations when exposed to rhythmic acoustic stimuli, a condition of increasing interest due to the positive contribution of such stimuli when training or restoring the control of movement.
Collapse
Affiliation(s)
- Analina Emmanouil
- Sports Biomechanics Lab, Department of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Elissavet Rousanoglou
- Sports Biomechanics Lab, Department of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Georgaki
- Laboratory of Music Acoustics and Technology, Department of Music Studies, National and Kapodistrian University of Athens, Athens, Greece
| | - Konstantinos Boudolos
- Sports Biomechanics Lab, Department of Sport Medicine and Biology of Exercise, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
6
|
Effect of different music genres on gait patterns in Parkinson’s disease. Neurol Sci 2019; 41:575-582. [PMID: 31713758 DOI: 10.1007/s10072-019-04127-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/25/2019] [Indexed: 10/25/2022]
|
7
|
Using Music-Based Cadence Entrainment to Manipulate Walking Intensity. J Phys Act Health 2019; 16:1039-1046. [PMID: 31509799 DOI: 10.1123/jpah.2019-0097] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/12/2019] [Accepted: 07/01/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND While previous studies indicate an auditory metronome can entrain cadence (in steps per minute), music may also evoke prescribed cadences and metabolic intensities. PURPOSE To determine how modulating the tempo of a single commercial song influences adults' ability to entrain foot strikes while walking and how this entrainment affects metabolic intensity. METHODS Twenty healthy adults (10 men and 10 women; mean [SD]: age 23.7 [2.7] y, height 172.8 [9.0] cm, mass 71.5 [16.2] kg) walked overground on a large circular pathway for six 5-min conditions; 3 self-selected speeds (slow, normal, and fast); and 3 trials listening to a song with its tempo modulated to 80, 100, and 125 beats per minute. During music trials, participants were instructed to synchronize their step timing with the music tempo. Cadence was measured via direct observation, and metabolic intensity (metabolic equivalents) was assessed using indirect calorimetry. RESULTS Participants entrained their cadences to the music tempos (mean absolute percentage error = 5.3% [5.8%]). Entraining to a music tempo of 100 beats per minute yielded ≥3 metabolic equivalents in 90% of participants. Trials with music entrainment exhibited greater metabolic intensity compared with self-paced trials (repeated-measures analysis of variance, F1,19 = 8.05, P = .01). CONCLUSION This study demonstrates the potential for using music to evoke predictable metabolic intensities.
Collapse
|
8
|
Ready EA, McGarry LM, Rinchon C, Holmes JD, Grahn JA. Beat perception ability and instructions to synchronize influence gait when walking to music-based auditory cues. Gait Posture 2019; 68:555-561. [PMID: 30640155 DOI: 10.1016/j.gaitpost.2018.12.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 12/09/2018] [Accepted: 12/25/2018] [Indexed: 02/02/2023]
Abstract
Synchronizing gait to music-based auditory cues (rhythmic auditory stimulation) is a strategy used to manage gait impairments in a variety of neurological conditions, including Parkinson's disease. However, knowledge of how to individually optimize music-based cues is limited. The purpose of this study was to investigate how instructions to synchronize with auditory cues influences gait outcomes among healthy young adults with either good or poor beat perception ability. 65 healthy adults walked to metronome and musical stimuli with high and low levels of perceived groove (how much it induces desire to move) and familiarity at a tempo equivalent to their self-selected walking pace. Participants were randomized to instruction conditions: (i) synchronized: match footsteps with the beat, or (ii) free-walking: walk comfortably. Participants were classified as good or poor beat perceivers using the Beat Alignment Test. In this study, poor beat perceivers show better balance-related parameters (stride width and double-limb support time) when they are not instructed to synchronize their gait with cues (versus when synchronization was required). Good beat perceivers, in contrast, were better when instructed to synchronize gait (versus when no synchronization was required). Changes in stride length and velocity were influenced by musical properties, in particular the perceived 'groove' (greater stride length and velocity with high- versus low-groove cues) and, in some cases, this interacted with beat perception ability. The results indicate that beat perception ability and instructions to synchronize indeed influence spatiotemporal gait parameters when walking to music- and metronome-based rhythmic auditory stimuli. Importantly, these results suggest that both low groove cues and instructing poor beat perceivers to synchronize may interfere with performance while walking, thus potentially impacting both empirical and clinical outcomes.
Collapse
Affiliation(s)
- Emily A Ready
- Health & Rehabilitation Sciences, University of Western Ontario, Canada; Brain & Mind Institute, University of Western Ontario, Canada.
| | - Lucy M McGarry
- Brain & Mind Institute, University of Western Ontario, Canada; Department of Psychology, University of Western Ontario, Canada
| | - Cricia Rinchon
- Schulich School of Medicine & Dentistry, University of Western Ontario, Canada.
| | - Jeffrey D Holmes
- Health & Rehabilitation Sciences, University of Western Ontario, Canada; School of Occupational Therapy, University of Western Ontario, Canada.
| | - Jessica A Grahn
- Brain & Mind Institute, University of Western Ontario, Canada; Department of Psychology, University of Western Ontario, Canada.
| |
Collapse
|
9
|
Abstract
Video-fluoroscopic analysis can provide important insights for the evaluation of outcome and functionality after total knee arthroplasty, allowing the in vivo assessment of tibiofemoral kinematics without soft tissue artefacts. To enable measurement of the knee throughout activities of daily living such as gait, robotic systems like the moving fluoroscope have been developed that follow the knee movement and maintain the joint in front of the image intensifier. Since it is unclear whether walking while being accompanied by moving fluoroscope affects normal gait, the objective of this study was to investigate its influence on gait characteristics in healthy subjects. In addition, the impact of the motors' noise was analysed. By means of skin markers analysis (VICON MX system, Oxford Metrics Group, UK) and simultaneous measurement of ground reaction forces (Kistler force plates, Kistler, Switzerland), gait characteristics when walking with and without the moving fluoroscope as well as with and without ear protectors in combination with the moving fluoroscope, were obtained in young (n = 10, 24.5y ± 3.0y) and elderly (n = 9, 61.6y ± 5.3y) subjects during level gait and stair descent. Walking with the moving fluoroscope significantly decreased gait velocity in level gait and stair descent over the respective movement without the fluoroscope. Statistical analysis, including gait velocity as a covariate, resulted in no differences on the ground reaction force parameters. However, some kinematic parameters (ankle, knee and hip ranges of motion, minimal knee angle in late stance phase, maximal knee angles in stance and swing phase) seemed to be modified by the presence of the moving fluoroscope, but statistical comparison was limited due to velocity differences between the conditions. Wearing ear protectors to avoid the influence of motor sound during walking with the moving fluoroscope caused no significant difference. Walking with the moving fluoroscope has been shown to decrease gait velocity and small alterations in kinematic parameters were observed. Therefore, gait and movement alterations due to the moving fluoroscope cannot completely be excluded. However, based on the absence of differences in ground reaction force parameters (when adjusted for velocity within ANCOVA), as well as based on the comparable shape of the angular curves to the slow control condition, it can be concluded that changes in gait when walking with the moving fluoroscope are small, especially in comparison to natural slow walking. In order to allow assessment of joint replacement with the moving fluoroscope, including an understanding of the effects of joint pain, clinical analyses can only be compared to gait activities showing similarly reduced velocities. Importantly, the reduced gait speeds observed in this study are similar to those observed after total knee arthroplasty, suggesting that analyses in such subjects are appropriate. However, the moving fluoroscope would likely need to be optimized in order to detect natural gait characteristics at the higher gait velocities of healthy young subjects. The moving fluoroscope can be applied for comparisons between groups measured with the moving fluoroscope, but care should be taken when comparing data to subjects walking at self-selected speed without the moving fluoroscope.
Collapse
|
10
|
Rossi F, Montanaro E, de'Sperati C. Speed Biases With Real-Life Video Clips. Front Integr Neurosci 2018; 12:11. [PMID: 29615875 PMCID: PMC5864902 DOI: 10.3389/fnint.2018.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/28/2018] [Indexed: 11/13/2022] Open
Abstract
We live almost literally immersed in an artificial visual world, especially motion pictures. In this exploratory study, we asked whether the best speed for reproducing a video is its original, shooting speed. By using adjustment and double staircase methods, we examined speed biases in viewing real-life video clips in three experiments, and assessed their robustness by manipulating visual and auditory factors. With the tested stimuli (short clips of human motion, mixed human-physical motion, physical motion and ego-motion), speed underestimation was the rule rather than the exception, although it depended largely on clip content, ranging on average from 2% (ego-motion) to 32% (physical motion). Manipulating display size or adding arbitrary soundtracks did not modify these speed biases. Estimated speed was not correlated with estimated duration of these same video clips. These results indicate that the sense of speed for real-life video clips can be systematically biased, independently of the impression of elapsed time. Measuring subjective visual tempo may integrate traditional methods that assess time perception: speed biases may be exploited to develop a simple, objective test of reality flow, to be used for example in clinical and developmental contexts. From the perspective of video media, measuring speed biases may help to optimize video reproduction speed and validate "natural" video compression techniques based on sub-threshold temporal squeezing.
Collapse
Affiliation(s)
- Federica Rossi
- Laboratory of Action, Perception and Cognition, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| | - Elisa Montanaro
- Department of Neuroscience Rita Levi Montalcini, University of Turin, Turin, Italy
| | - Claudio de'Sperati
- Laboratory of Action, Perception and Cognition, Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy.,Experimental Psychology Unit, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
11
|
Laatar R, Kachouri H, Borji R, Rebai H, Sahli S. The effect of cell phone use on postural balance and mobility in older compared to young adults. Physiol Behav 2017; 173:293-297. [PMID: 28238776 DOI: 10.1016/j.physbeh.2017.02.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/23/2017] [Accepted: 02/23/2017] [Indexed: 11/15/2022]
Abstract
Cell phone use is considered as an essential part of everyday life saturating all age groups and demographics. This study aimed to explore the effect of various cell phone functions on postural control and mobility in the elderly. Twenty healthy older (mean age 72.5±2.9) and twenty young (26.3±2.8) adults participated in this study. Postural balance was assessed by measuring the center of pressure (CoP) displacement with (talking on a cell phone (CONVERSE), dialing a number (DIAL) and listening to music (MUSIC)) and without cell phone use. Mobility was assessed by the Timed Up and Go Test (TUGT). Results showed that for both groups, the CoP parameters increased significantly during the CONVERSE (p<0.001) and the DIAL (CoParea, CoPX: p<0.05; CoPY: p<0.01) conditions compared to the control condition. Moreover, the CoParea values were significantly higher during the CONVERSE condition in comparison to the DIAL (p<0.05) one. In older adults, the TUGT scores increased significantly in the DIAL (p<0.01) condition compared to the CONVERSE and the MUSIC conditions. In conclusion, cell phone use impairs similarly standing postural balance of elderly and young adults. Interestingly, in the elderly, all cell phone functions used altered mobility with the dialing function causing the largest mobility deterioration.
Collapse
Affiliation(s)
- Rabeb Laatar
- Research Unit: Education, Motricité, Sport et Santé, UR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| | - Hiba Kachouri
- Research Unit: Education, Motricité, Sport et Santé, UR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| | - Rihab Borji
- Research Unit: Education, Motricité, Sport et Santé, UR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| | - Haithem Rebai
- Research Unit: Education, Motricité, Sport et Santé, UR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| | - Sonia Sahli
- Research Unit: Education, Motricité, Sport et Santé, UR15JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Tunisia.
| |
Collapse
|
12
|
Ashoori A, Eagleman DM, Jankovic J. Effects of Auditory Rhythm and Music on Gait Disturbances in Parkinson's Disease. Front Neurol 2015; 6:234. [PMID: 26617566 PMCID: PMC4641247 DOI: 10.3389/fneur.2015.00234] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/22/2015] [Indexed: 12/05/2022] Open
Abstract
Gait abnormalities, such as shuffling steps, start hesitation, and freezing, are common and often incapacitating symptoms of Parkinson’s disease (PD) and other parkinsonian disorders. Pharmacological and surgical approaches have only limited efficacy in treating these gait disorders. Rhythmic auditory stimulation (RAS), such as playing marching music and dance therapy, has been shown to be a safe, inexpensive, and an effective method in improving gait in PD patients. However, RAS that adapts to patients’ movements may be more effective than rigid, fixed-tempo RAS used in most studies. In addition to auditory cueing, immersive virtual reality technologies that utilize interactive computer-generated systems through wearable devices are increasingly used for improving brain–body interaction and sensory–motor integration. Using multisensory cues, these therapies may be particularly suitable for the treatment of parkinsonian freezing and other gait disorders. In this review, we examine the affected neurological circuits underlying gait and temporal processing in PD patients and summarize the current studies demonstrating the effects of RAS on improving these gait deficits.
Collapse
Affiliation(s)
- Aidin Ashoori
- Columbia University College of Physicians & Surgeons , New York, NY , USA
| | - David M Eagleman
- Department of Neuroscience, Baylor College of Medicine , Houston, TX , USA
| | - Joseph Jankovic
- Department of Neurology, Parkinson's Disease Center and Movement Disorders Clinic, Baylor College of Medicine , Houston, TX , USA
| |
Collapse
|