1
|
Gavilán J, Mardones C, Oyarce G, Triviño S, Espinoza-Rubilar N, Ramírez-Molina O, Pérez C, Becerra J, Varas P, Duran-Arcos R, Muñoz-Montesino C, Moraga-Cid G, Yévenes GE, Fuentealba J. Elephant Black Garlic's Beneficial Properties for Hippocampal Neuronal Network, Chemical Characterization and Biological Evaluation. Foods 2023; 12:3968. [PMID: 37959086 PMCID: PMC10650549 DOI: 10.3390/foods12213968] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 11/15/2023] Open
Abstract
Garlic has been used for decades as an important food and additionally for its beneficial properties in terms of nutrition and ancestral therapeutics. In this work, we compare the properties of fresh (WG) and aged (BG) extract obtained from elephant garlic, harvested on Chiloe Island, Chile. BG was prepared from WG with a 20-day aging process under controlled temperature and humidity conditions. We observed that in BG, compounds such as diallyl disulfide decrease, and compounds of interest such as 5-hydroxymethylfurfural (69%), diallyl sulfide (17%), 3H-1,2-Dithiole (22%) and 4-Methyl-1,2,3-trithiolane (16%) were shown to be increased. Using 2,2-diphenyl-1-picrylhydrazyl (DPPH, BG: 51 ± 5.7%, WG: 12 ± 2.6%) and 2,20-azino-bis-(3-ethylbenzothiazoline-6 sulfonate) diammonium salt (ABTS, BG: 69.4 ± 2.3%, WG: 21 ± 3.9%) assays, we observed that BG possesses significantly higher antioxidant activity than WG and increased cell viability in hippocampal slices (41 ± 9%). The effects of WG and BG were shown to improve the neuronal function through an increased in intracellular calcium transients (189 ± 4%). In parallel, BG induced an increase in synaptic vesicle protein 2 (SV-2; 75 ± 12%) and brain-derived neurotrophic factor (BDNF; 32 ± 12%) levels. Thus, our study provides the initial scientific bases to foster the use of BG from Chiloe Island as a functional food containing a mixture of bioactive compounds that may contribute to brain health and well-being.
Collapse
Affiliation(s)
- Javiera Gavilán
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Claudia Mardones
- Facultad de Farmacia, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile;
| | - Gabriela Oyarce
- Laboratorio de Quimica de Productos Naturales, Facultas de Ciencias Naturales y Oceanograficas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (G.O.); (S.T.); (C.P.); (J.B.)
| | - Sergio Triviño
- Laboratorio de Quimica de Productos Naturales, Facultas de Ciencias Naturales y Oceanograficas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (G.O.); (S.T.); (C.P.); (J.B.)
| | - Nicole Espinoza-Rubilar
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Oscar Ramírez-Molina
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Claudia Pérez
- Laboratorio de Quimica de Productos Naturales, Facultas de Ciencias Naturales y Oceanograficas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (G.O.); (S.T.); (C.P.); (J.B.)
| | - José Becerra
- Laboratorio de Quimica de Productos Naturales, Facultas de Ciencias Naturales y Oceanograficas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (G.O.); (S.T.); (C.P.); (J.B.)
| | | | - Robinson Duran-Arcos
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Carola Muñoz-Montesino
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Gustavo Moraga-Cid
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| | - Gonzalo E. Yévenes
- MinusPain, Facultad de Ciencias Biológicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile
| | - Jorge Fuentealba
- Departmento de Fisiologia, Facultad de Ciencias Biologicas, Universidad de Concepcion, Concepción P.O. Box 160-C, Chile; (J.G.); (N.E.-R.); (O.R.-M.); (R.D.-A.); (C.M.-M.); (G.M.-C.)
| |
Collapse
|
2
|
Nurmasitoh T, Sari DCR, Partadiredja G. The effects of black garlic on the working memory and pyramidal cell number of medial prefrontal cortex of rats exposed to monosodium glutamate. Drug Chem Toxicol 2017; 41:324-329. [DOI: 10.1080/01480545.2017.1414833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Titis Nurmasitoh
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Islam Indonesia, Yogyakarta, Indonesia
| | - Dwi Cahyani Ratna Sari
- Department of Anatomy, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ginus Partadiredja
- Department of Physiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
3
|
Zhou H, Qu Z, Mossine VV, Nknolise DL, Li J, Chen Z, Cheng J, Greenlief CM, Mawhinney TP, Brown PN, Fritsche KL, Hannink M, Lubahn DB, Sun GY, Gu Z. Proteomic analysis of the effects of aged garlic extract and its FruArg component on lipopolysaccharide-induced neuroinflammatory response in microglial cells. PLoS One 2014; 9:e113531. [PMID: 25420111 PMCID: PMC4242640 DOI: 10.1371/journal.pone.0113531] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Aged garlic extract (AGE) is widely used as a dietary supplement, and is claimed to promote human health through anti-oxidant/anti-inflammatory activities with hypolipidemic, antiplatelet and neuroprotective effects. Prior studies of AGE have mainly focused on its organosulfur compounds, with little attention paid to its carbohydrate derivatives, such as N-α-(1-deoxy-D-fructos-1-yl)-L-arginine (FruArg). The goal of this study is to investigate actions of AGE and FruArg on antioxidative and neuroinflammatory responses in lipopolysaccharide (LPS)-activated murine BV-2 microglial cells using a proteomic approach. Our data show that both AGE and FruArg can significantly inhibit LPS-induced nitric oxide (NO) production in BV-2 cells. Quantitative proteomic analysis by combining two dimensional differential in-gel electrophoresis (2D-DIGE) with mass spectrometry revealed that expressions of 26 proteins were significantly altered upon LPS exposure, while levels of 20 and 21 proteins exhibited significant changes in response to AGE and FruArg treatments, respectively, in LPS-stimulated BV-2 cells. Notably, approximate 78% of the proteins responding to AGE and FruArg treatments are in common, suggesting that FruArg is a major active component of AGE. MULTICOM-PDCN and Ingenuity Pathway Analyses indicate that the proteins differentially affected by treatment with AGE and FruArg are involved in inflammatory responses and the Nrf2-mediated oxidative stress response. Collectively, these results suggest that AGE and FruArg attenuate neuroinflammatory responses and promote resilience in LPS-activated BV-2 cells by suppressing NO production and by regulating expression of multiple protein targets associated with oxidative stress.
Collapse
Affiliation(s)
- Hui Zhou
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Zhe Qu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Valeri V. Mossine
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Dineo L. Nknolise
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Jilong Li
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - Zhenzhou Chen
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Jianlin Cheng
- Department of Computer Science, Informatics Institute, University of Missouri, Columbia, Missouri, United States of America
| | - C. Michael Greenlief
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Thomas P. Mawhinney
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Paula N. Brown
- British Columbia Institute of Technology, Vancouver, British Columbia, Canada
| | - Kevin L. Fritsche
- Division of Animal Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Mark Hannink
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Dennis B. Lubahn
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Grace Y. Sun
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Department of Biochemistry, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
| | - Zezong Gu
- Department of Pathology and Anatomical Sciences, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Center for Translational Neuroscience, University of Missouri School of Medicine, Columbia, Missouri, United States of America
- Harry S. Truman Veterans Hospital, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
4
|
The antioxidant mechanisms underlying the aged garlic extract- and S-allylcysteine-induced protection. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:907162. [PMID: 22685624 PMCID: PMC3363007 DOI: 10.1155/2012/907162] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 03/02/2012] [Accepted: 03/09/2012] [Indexed: 12/17/2022]
Abstract
Aged garlic extract (AGE) is an odorless garlic preparation containing S-allylcysteine (SAC) as its most abundant compound. A large number of studies have demonstrated the antioxidant activity of AGE and SAC in both in vivo--in diverse experimental animal models associated to oxidative stress--and in vitro conditions--using several methods to scavenge reactive oxygen species or to induce oxidative damage. Derived from these experiments, the protective effects of AGE and SAC have been associated with the prevention or amelioration of oxidative stress. In this work, we reviewed different antioxidant mechanisms (scavenging of free radicals and prooxidant species, induction of antioxidant enzymes, activation of Nrf2 factor, inhibition of prooxidant enzymes, and chelating effects) involved in the protective actions of AGE and SAC, thereby emphasizing their potential use as therapeutic agents. In addition, we highlight the ability of SAC to activate Nrf2 factor--a master regulator of the cellular redox state. Here, we include original data showing the ability of SAC to activate Nrf2 factor in cerebral cortex. Therefore, we conclude that the therapeutic properties of these molecules comprise cellular and molecular mechanisms at different levels.
Collapse
|
5
|
Abstract
BACKGROUND In this article, we review a diverse body of research and draw conclusions about the usefulness, or lack there-of, of specific antioxidants in the prevention of Alzheimer's disease (AD). METHODS The National Library of Medicine's database was searched for the years 1996-2004 using the search terms "Alzheimer's, anti-oxidants, antioxidants." RESULTS Over 300 articles were identified and 187 articles were selected for inclusion based on relevance to the topic. Agents that show promise in helping prevent AD include: 1) aged garlic extract, 2) curcumin, 3) melatonin, 4) resveratrol, 5) Ginkgo biloba extract, 6) green tea, 7) vitamin C and 8) vitamin E. CONCLUSIONS While the clinical value of antioxidants for the prevention of AD is often ambiguous, some can be recommended based upon: 1) epidemiological evidence, 2) known benefits for prevention of other maladies, and 3) benign nature of the substance. Long-term, prospective studies are recommended.
Collapse
Affiliation(s)
- Bradford Frank
- Department of Psychiatry, University of Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA.
| | | |
Collapse
|
6
|
Li Y, Lu YY. Applying a highly specific and reproducible cDNA RDA method to clone garlic up-regulated genes in human gastric cancer cells. World J Gastroenterol 2002; 8:213-6. [PMID: 11925594 PMCID: PMC4658353 DOI: 10.3748/wjg.v8.i2.213] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop and optimize cDNA representational difference analysis (cDNA RDA) method and to identify and clone garlic up-regulated genes in human gastric cancer (HGC) cells.
METHODS: We performed cDNA RDA method by using abundant double-stranded cDNA messages provided by two self-constructed cDNA libraries (Allitridi-treated and paternal HGC cell line BGC823 cells cDNA libraries respectively). BamH I and Xho I restriction sites harbored in the library vector were used to select representations. Northern and Slot blots analyses were employed to identify the obtained difference products.
RESULTS: Fragments released from the cDNA library vector after restriction endonuclease digestion acted as good marker indicating the appropriate digestion degree for library DNA. Two novel expressed sequence tags (ESTs) and a recombinant gene were obtained. Slot blots result showed a 8-fold increase of glia-derived nexin/protease nexin 1 (GDN/PN1) gene expression level and 4-fold increase of hepatitis B virus x-interacting protein (XIP) mRNA level in BGC823 cells after Allitridi treatment for 72 h.
CONCLUSION: Elevated levels of GDN/PN1 and XIP mRNAs induced by Allitridi provide valuable molecular evidence for elucidating the garlic's efficacies against neurodegenerative and inflammatory diseases. Isolation of a recombinant gene and two novel ESTs further show cDNA RDA based on cDNA libraries to be a powerful method with high specificity and reproducibility in cloning differentially expressed genes.
Collapse
Affiliation(s)
- Yong Li
- Beijing Institute for Cancer Research, Beijing Laboratory of Molecular Oncology, School of Oncology, Peking University, 1 Da-Hong-Luo-Chang Street, Western District, Beijing 100034, China
| | | |
Collapse
|