1
|
Chumroenvidhayakul S, Thilavech T, Abeywardena M, Adisakwattana S. Dragon Fruit Peel Waste ( Hylocereus undatus) as a Potential Ingredient for Reducing Lipid Peroxidation, Dietary Advanced Glycation End Products, and Starch Digestibility in Cookies. Antioxidants (Basel) 2023; 12:antiox12051002. [PMID: 37237868 DOI: 10.3390/antiox12051002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Excessive consumption of cookies has been linked to harmful health outcomes owing to the presence of refined carbohydrates and heat-induced toxicants including end products of lipid peroxidation and dietary advanced glycation end products (dAGEs). To address this issue, this study explores the addition of dragon fruit peel powder (DFP), which is rich in phytochemicals and dietary fibers, to cookies as a potential solution to mitigate their adverse effects. The results indicate that adding DFP at 1%, 2%, and 5% w/w of raw cookie dough significantly improves the total phenolic and betacyanin contents and antioxidant activity, as evidenced by increased ferric-reducing antioxidant power. DFP incorporation also led to reductions in malondialdehyde and dAGEs (p < 0.05). Furthermore, the starch digestibility, hydrolysis index, and predicted glycemic index were all reduced in the presence of DFP, with the latter estimate being due to the higher content of undigested starch. Incorporating DFP in cookies resulted in significant changes in their physical properties, including texture and color. However, sensory evaluation indicates that the overall acceptability of the cookies was not negatively impacted by the addition of up to 2% DFP, suggesting that it is a viable option for enhancing the nutritional value of cookies without compromising their palatability. These findings suggest that DFP is a sustainable and healthier ingredient that can improve the antioxidant capacity of cookies while also mitigating the harmful effects of heat-induced toxins.
Collapse
Affiliation(s)
- Siriwan Chumroenvidhayakul
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thavaree Thilavech
- Department of Food Chemistry, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | | | - Sirichai Adisakwattana
- Phytochemical and Functional Food Research Unit for Clinical Nutrition, Department of Nutrition and Dietetics, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Effects of dietary oxidized oil on growth performance, meat quality and biochemical indices in poultry – a review. ANNALS OF ANIMAL SCIENCE 2021. [DOI: 10.2478/aoas-2020-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
Lipids (fats and oils) are a concentrated source of energy in poultry diets that improves palatability, feed consistency, provides essential fatty acids and increases the absorption of fat-soluble vitamins. Fresh oil is an expensive energy source and its exposure to air, heat, metallic catalyst during storage and processing may lead to its oxidative deterioration. This review highlights the response of modern poultry to dietary oxidized oil on growth performance, nutrients digestibility, gut health, carcass characteristics, meat quality, blood chemistry and tissue oxidative status. Literature shows that in moderately (peroxide value (PV): 20 to 50 meq kg−1) and highly (PV: 50 to 100 meq kg−1 or above) oxidized oils, lipid peroxidation causes rancid odours and flavours that negatively affect feed palatability, reduces intestinal villus height that decreases the surface area available for nutrients absorption. The oxidation products also damage fat soluble vitamins (A, D, E and K) in blood resulting in an oxidative stress. The use of oxidized oil in poultry diets has no significant effect on dressing percentage, pH and meat colour, whereas carcass weight decreases and drip loss of meat increases. Overall, there is a contradictory data regarding the influence of oxidized oil in poultry feed depending on the PV and inclusion levels. The reviewed literature shows that the use of mildly oxidized (PV < 20 meq kg−1) oil in poultry feed with 4 to 5% inclusion level decreases the feed cost and ultimately cost of poultry production without compromising their growth performance. It can, therefore, partially replace fresh oil as an efficient, cost effective and sustainable energy source in poultry diets.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to assess whether dietary fish oil supplements can be appropriate for patients with elevated triglycerides and cardiovascular risk based on a comprehensive analysis of their composition, and level of regulatory oversight. RECENT FINDINGS Approximately 19 million people in the United States take fish oil supplements, many for the purpose of treating or preventing heart disease. Unlike prescription products, fish oil supplements are classified as food by the Food and Drug Administration (FDA) and are not required to undergo manufacturing oversight or clinical testing. Analysis of widely used dietary fish oil supplements show that they may have lower amounts of ω-3 than advertised as well as significant levels of saturated fat and oxidized oils which actually may contribute to dyslipidemia. Clinical outcome trials have failed to show a consistent cardiovascular benefit with fish oil supplements and other low-dose mixed ω-3 fatty acids. SUMMARY In light of limited regulatory oversight and evidence of quality concerns, dietary fish oil supplements are not an appropriate substitute for FDA approved prescription ω-3 fatty acids for their indicated use in treatment of elevated triglycerides or the prevention of cardiovascular events.
Collapse
Affiliation(s)
| | - Michael Lero
- Elucida Research LLC, Beverly, MA, USA
- University of Massachusetts School of Medicine, Worcester, MA, USA
| | - R. Preston Mason
- Elucida Research LLC, Beverly, MA, USA
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
4
|
Shang W, Si X, Strappe P, Zhou Z, Blanchard C. Resistant starch attenuates impaired lipid biosynthesis induced by dietary oxidized oil via activation of insulin signaling pathways. RSC Adv 2017. [DOI: 10.1039/c7ra08855h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The current study found that deep-frying process led to an increased content of oxidized triacylglycerols in canola oil, 3.5 times higher than that of fresh canola oil (not used for frying).
Collapse
Affiliation(s)
- Wenting Shang
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- School of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Xu Si
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- School of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Padraig Strappe
- School of Medical and Applied Sciences
- Central Queensland University
- Rockhampton
- Australia
| | - Zhongkai Zhou
- Key Laboratory of Food Nutrition and Safety
- Ministry of Education
- School of Food Engineering and Biotechnology
- Tianjin University of Science and Technology
- Tianjin 300457
| | - Chris Blanchard
- ARC Industrial Transformation Training Centre for Functional Grains
- Charles Sturt University
- Wagga Wagga
- Australia
| |
Collapse
|
5
|
Ringseis R, Kynast AM, Couturier A, Most E, Eder K. Ingestion of frying fat leads to activation of the endoplasmic reticulum stress-induced unfolded protein response in the duodenal mucosa of pigs. Mol Nutr Food Res 2016; 60:957-63. [PMID: 26679257 DOI: 10.1002/mnfr.201500687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/19/2015] [Accepted: 12/09/2015] [Indexed: 11/10/2022]
Abstract
SCOPE Ingestion of oxidized fats (OF) causes activation of stress signaling pathways such as nuclear factor-erythroid 2-related factor 2 (Nrf2) in the intestine. Activation of this pathway is mediated by ER stress-induced unfolded protein response (UPR). Herein, we hypothesized that ingestion of OF causes ER stress-induced UPR in duodenal mucosa of pigs. METHODS AND RESULTS Six-wk-old cross-bred pigs received either a control diet with fresh fat or a diet with OF for 29 days. Pigs fed OF exhibited increased phosphorylation of the ER stress downstream target eukaryotic translation initiation factor 2α and induction of several genes involved in ER stress-induced UPR and Nrf2 target genes in duodenal mucosa. No signs of an impaired intestinal barrier function or a systemic inflammatory response could be found in pigs fed OF. CONCLUSION Activation of ER stress-induced UPR by OF in the duodenal mucosa in pigs might be interpreted as a cytoprotective response to stress factors associated with ingestion of OF. Given the similarities between pigs and humans with respect to digestive physiology, it is possible that regular ingestion of fried foods containing OF activates the ER stress-induced UPR also in the intestinal mucosa of humans.
Collapse
Affiliation(s)
- Robert Ringseis
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Anna Marie Kynast
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Aline Couturier
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Erika Most
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| | - Klaus Eder
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Giessen, Germany
| |
Collapse
|
6
|
Mao X, Lv M, Yu B, He J, Zheng P, Yu J, Wang Q, Chen D. The effect of dietary tryptophan levels on oxidative stress of liver induced by diquat in weaned piglets. J Anim Sci Biotechnol 2014; 5:49. [PMID: 25810902 PMCID: PMC4373006 DOI: 10.1186/2049-1891-5-49] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022] Open
Abstract
Oxidative stress can induce abnormal tryptophan metabolism. The present study was mainly conducted to determine the effect of dietary tryptophan levels on oxidative stress in the liver of weaned pigs challenged by diquat. A total of 36 PIC piglets weaned at 21 days of age were randomly allotted to 1 of 3 diets containing dietary tryptophan levels of 0.18, 0.30, and 0.45% for 14 d. On day 8, the piglets were injected intraperitoneally with sterile 0.9% NaCl solution or diquat (10 mg/kg body weight). During the first 7 d of trial, increasing dietary tryptophan levels enhanced average daily gain (P = 0.09) and average daily feed intake (P = 0.08), and decreased the feed efficiency (P < 0.05) of piglets. The growth performance was decreased by diquat injection (P < 0.05). Diquat injection also decreased the activities of the superoxide dismutase (SOD) and glutathione peroxidase (GPx) in the plasma and liver (P < 0.05), increased plasma malondialdehyde (MDA) (P < 0.05) and urea nitrogen (P < 0.05) concentrations, and enhanced MDA concentration (P = 0.09) and tryptophan 2,3-dioxygenase (TDO) activity (P = 0.07) in liver of piglets. Increasing dietary tryptophan levels could attenuate the effects of diquat injection on the MDA (P = 0.06) concentration and the activities of SOD (P = 0.09) and GPx (P = 0.05) of the liver, and plasma urea nitrogen (P = 0.06) concentration in the piglet. There was a synergistic role for increasing TDO activity in the liver between dietary tryptophan levels and diquat injection (P < 0.05). These results suggest that increasing dietary tryptophan levels could attenuate the oxidative stress of the liver in weaned piglets intraperitoneally injected with diquat via enhancing the antioxidant capacity.
Collapse
Affiliation(s)
- Xiangbing Mao
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Mei Lv
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Bing Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Jun He
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Ping Zheng
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Jie Yu
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Quyuan Wang
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| | - Daiwen Chen
- Animal Nutrition Institute, Sichuan Agricultural University, Xinkang Road 46#, Ya'an, Sichuan Province 625014 People's Republic of China ; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ya'an, 625014 People's Republic of China
| |
Collapse
|
7
|
Chemical Changes in Extra Virgin Argan Oil after Thermal Treatment. Nat Prod Commun 2013. [DOI: 10.1177/1934578x1300800107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Physicochemical parameters, measured every 6 hours, of extra virgin argan oil heated for 24 h at 180°C were investigated and compared with those of five other edible oils treated in the same thermoxidative condition. Argan oil was found to be particularly stable at high temperature, its level of polar compounds remaining low even after 24 h of heating.
Collapse
|
8
|
Varady J, Ringseis R, Eder K. Dietary moderately oxidized oil induces expression of fibroblast growth factor 21 in the liver of pigs. Lipids Health Dis 2012; 11:34. [PMID: 22394566 PMCID: PMC3807756 DOI: 10.1186/1476-511x-11-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 03/06/2012] [Indexed: 12/03/2022] Open
Abstract
Background Fibroblast growth factor 21 (FGF21), whose expression is induced by peroxisome proliferator-activated receptor α (PPARα), has been recently identified as a novel metabolic regulator which plays a crucial role in glucose homeostasis, lipid metabolism, insulin sensitivity and obesity. Previous studies have shown that administration of oxidized fats leads to an activation of PPARα in the liver. Therefore, the present study investigated the hypothesis that feeding of oxidized fats causes an induction of FGF21 in the liver. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h. Results In pigs fed the oxidized fat mRNA abundance and protein concentrations of FGF21 in liver were significantly increased (P < 0.05), and the protein concentrations of FGF21 in plasma tended to be increased (P < 0.1) in comparison to control pigs. Moreover, pigs fed the oxidized fat had increased transcript levels of the PPARα target genes acyl-CoA oxidase, carnitine palmitoyltransferase-1 and novel organic cation transporter 2 in the liver (P < 0.05), indicative of PPARα activation. Conclusion The present study shows for the first time that administration of an oxidized fat induces the expression of FGF21 in the liver, probably mediated by activation of PPARα. Induction of FGF21 could be involved in several effects observed in animals administered an oxidized fat.
Collapse
Affiliation(s)
- Juliane Varady
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | |
Collapse
|
9
|
Varady J, Gessner DK, Most E, Eder K, Ringseis R. Dietary moderately oxidized oil activates the Nrf2 signaling pathway in the liver of pigs. Lipids Health Dis 2012; 11:31. [PMID: 22364167 PMCID: PMC3299602 DOI: 10.1186/1476-511x-11-31] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 02/24/2012] [Indexed: 11/23/2022] Open
Abstract
Background Previous studies have shown that administration of oxidized oils increases gene expression and activities of various enzymes involved in xenobiotic metabolism and stress response in the liver of rats and guinea pigs. As these genes are controlled by nuclear factor erythroid-derived 2-like 2 (Nrf2), we investigated the hypothesis that feeding of oxidized fats causes an activation of that transcription factor in the liver which in turn activates the expression of antioxidant, cytoprotective and detoxifying genes. Methods Twenty four crossbred pigs were allocated to two groups of 12 pigs each and fed nutritionally adequate diets with either fresh rapeseed oil (fresh fat group) or oxidized rapeseed oil prepared by heating at a temperature of 175°C for 72 h (oxidized fat group). Results After 29 days of feeding, pigs of the oxidized fat group had a markedly increased nuclear concentration of the transcription factor Nrf2 and a higher activity of cellular superoxide dismutase and T4-UDP glucuronosyltransferase in liver than the fresh fat group (P < 0.05). In addition, transcript levels of antioxidant and phase II genes in liver, like superoxide dismutase 1, heme oxygenase 1, glutathione peroxidase 1, thioredoxin reductase 1, microsomal glutathione-S-transferase 1, UDP glucuronosyltransferase 1A1 and NAD(P)H:quinone oxidoreductase 1 in the liver were higher in the oxidized fat group than in the fresh fat group (P < 0.05). Moreover, pigs of the oxidized fat group had an increased hepatic nuclear concentration of the transcription factor NF-κB which is also an important transcription factor mediating cellular stress response. Conclusion The present study shows for the first time that administration of an oxidized fat activates the Nrf2 in the liver of pigs which likely reflects an adaptive mechanism to prevent cellular oxidative damage. Activation of the NF-κB pathway might also contribute to this effect of oxidized fat.
Collapse
Affiliation(s)
- Juliane Varady
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
10
|
Kämmerer I, Ringseis R, Biemann R, Wen G, Eder K. 13-hydroxy linoleic acid increases expression of the cholesterol transporters ABCA1, ABCG1 and SR-BI and stimulates apoA-I-dependent cholesterol efflux in RAW264.7 macrophages. Lipids Health Dis 2011; 10:222. [PMID: 22129452 PMCID: PMC3248880 DOI: 10.1186/1476-511x-10-222] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Synthetic activators of peroxisome proliferator-activated receptors (PPARs) stimulate cholesterol removal from macrophages through PPAR-dependent up-regulation of liver × receptor α (LXRα) and subsequent induction of cholesterol exporters such as ATP-binding cassette transporter A1 (ABCA1) and scavenger receptor class B type 1 (SR-BI). The present study aimed to test the hypothesis that the hydroxylated derivative of linoleic acid (LA), 13-HODE, which is a natural PPAR agonist, has similar effects in RAW264.7 macrophages. METHODS RAW264.7 macrophages were treated without (control) or with LA or 13-HODE in the presence and absence of PPARα or PPARγ antagonists and determined protein levels of LXRα, ABCA1, ABCG1, SR-BI, PPARα and PPARγ and apolipoprotein A-I mediated lipid efflux. RESULTS Treatment of RAW264.7 cells with 13-HODE increased PPAR-transactivation activity and protein concentrations of LXRα, ABCA1, ABCG1 and SR-BI when compared to control treatment (P < 0.05). In addition, 13-HODE enhanced cholesterol concentration in the medium but decreased cellular cholesterol concentration during incubation of cells with the extracellular lipid acceptor apolipoprotein A-I (P < 0.05). Pre-treatment of cells with a selective PPARα or PPARγ antagonist completely abolished the effects of 13-HODE on cholesterol efflux and protein levels of genes investigated. In contrast to 13-HODE, LA had no effect on either of these parameters compared to control cells. CONCLUSION 13-HODE induces cholesterol efflux from macrophages via the PPAR-LXRα-ABCA1/SR-BI-pathway.
Collapse
Affiliation(s)
- Ines Kämmerer
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35390 Giessen, Germany
| | | | | | | | | |
Collapse
|
11
|
Yue H, Wang J, Qi X, Ji F, Liu M, Wu S, Zhang H, Qi G. Effects of dietary oxidized oil on laying performance, lipid metabolism, and apolipoprotein gene expression in laying hens. Poult Sci 2011; 90:1728-36. [DOI: 10.3382/ps.2011-01354] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Açıkgöz Z, Bayraktar H, Altan O, Akhisaroglu ST, Kırkpınar F, Altun Z. The effects of moderately oxidised dietary oil with or without vitamin E supplementation on performance, nutrient digestibility, some blood traits, lipid peroxidation and antioxidant defence of male broilers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1277-1282. [PMID: 21337576 DOI: 10.1002/jsfa.4311] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 12/21/2010] [Accepted: 01/01/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND The experiment was conducted to determine the effects of dietary supplementation of oxidised oil with or without vitamin E on performance, nutrient digestibility, some blood traits, lipid peroxidation and antioxidant defence system of male broilers. RESULTS The supplementation of oxidised oil with or without vitamin E to the grower diets did not significantly affect performance, the pH and viscosity values of excreta and nutrient digestibilities in male broilers. Oxidised oil supplementation slightly increased plasma triglyceride and cholesterol concentrations but did not alter plasma glucose concentration. Although malondialdehyde (MDA) and nitric oxide concentrations tended to be higher in the oxidised oil group, these increases were not significant. Birds fed the diet containing oxidised oil had significantly lower superoxide dismutase (SOD) activity. However, no differences were observed in glutathione peroxidase (GSH-Px) activity and uric acid concentrations of broilers fed oxidised oil as compared to the control group. Dietary vitamin E supplementation decreased MDA concentration whereas increasing SOD activity, suggesting that vitamin E supplementation reduced susceptibility to lipid peroxidation. CONCLUSION The results showed that a milder oxidative stress occurred by supplementation of moderately oxidised oil to the diet of broilers and vitamin E supplementation had been helpful in alleviating lipid peroxidation.
Collapse
Affiliation(s)
- Zümrüt Açıkgöz
- Department of Animal Science, Faculty of Agriculture, Ege University, 35100 Bornova, Izmir, Turkey.
| | | | | | | | | | | |
Collapse
|
13
|
Dietary oxidized fat activates the oxidative stress-responsive transcription factors NF-κB and Nrf2 in intestinal mucosa of mice. Eur J Nutr 2011; 50:601-9. [DOI: 10.1007/s00394-011-0181-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Accepted: 02/25/2011] [Indexed: 10/18/2022]
|
14
|
Regulation of genes involved in lipid metabolism by dietary oxidized fat. Mol Nutr Food Res 2010; 55:109-21. [DOI: 10.1002/mnfr.201000424] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 10/12/2010] [Accepted: 10/14/2010] [Indexed: 11/07/2022]
|
15
|
Gigliotti J, Jaczynski J, Tou J. Determination of the nutritional value, protein quality and safety of krill protein concentrate isolated using an isoelectric solubilization/precipitation technique. Food Chem 2008. [DOI: 10.1016/j.foodchem.2008.03.030] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Tabatabaei N, Jamalian J, Owji AA, Ramezani R, Karbalaie N, Rajaeifard AR. Effects of dietary selenium supplementation on serum and liver selenium, serum malondialdehyde and liver glutathione peroxidase activity in rats consuming thermally oxidized sunflower oil. Food Chem Toxicol 2008; 46:3501-5. [DOI: 10.1016/j.fct.2008.08.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2007] [Revised: 06/07/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
17
|
Turner R, McLean CH, Silvers KM. Are the health benefits of fish oils limited by products of oxidation? Nutr Res Rev 2007; 19:53-62. [DOI: 10.1079/nrr2006117] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Human clinical trials have shown that fish oils reduce the risk of a variety of disorders including CVD. Despite this, results have been inconsistent. Fish oils are easily oxidised and some fish oils contain higher than recommended levels of oxidised products, but their effects have not been investigated. Recent evidence indicates that dietary oxidised fats can contribute to the development of atherosclerosis and thrombosis. This review summarises findings from cellular, animal and human trials that have examined the effects of oxidised lipids and their potential to affect health outcomes, and proposes that oxidised products in fish oils may attenuate their beneficial effects. More research is required to determine the magnitude of negative effects of fish oil on health outcomes in clinical trials.
Collapse
|
18
|
Koch A, König B, Spielmann J, Leitner A, Stangl GI, Eder K. Thermally oxidized oil increases the expression of insulin-induced genes and inhibits activation of sterol regulatory element-binding protein-2 in rat liver. J Nutr 2007; 137:2018-23. [PMID: 17709436 DOI: 10.1093/jn/137.9.2018] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Administration of oxidized oils to rats or pigs causes a reduction of their cholesterol concentrations in liver and plasma. The reason for this effect is unknown. We tested the hypothesis that oxidized oils lower cholesterol concentrations by inhibiting the proteolytic activation of sterol regulatory element-binding protein (SREBP)-2 in the liver and transcription of its target genes involved in cholesterol synthesis and uptake through an upregulation of gene expression of insulin-induced genes (Insig). For 6 d, 18 rats were orally administered either sunflower oil (control group) or an oxidized oil prepared by heating sunflower oil. Rats administered the oxidized oil had higher messenger RNA (mRNA) concentrations of acyl-CoA oxidase and cytochrome P450 4A1 in the liver than control rats (P < 0.05), indicative of activation of PPARalpha. Furthermore, rats administered the oxidized oil had higher mRNA concentrations of Insig-1 and Insig-2a, a lower concentration of the mature SREBP-2 in the nucleus, lower mRNA concentrations of the SREBP-2 target genes 3-hydroxy-3-methylglutaryl CoA reductase and LDL receptor in their livers, and a lower concentration of cholesterol in liver, plasma, VLDL, and HDL than control rats (P < 0.05). In conclusion, this study shows that reduced cholesterol concentrations in liver and plasma of rats administered an oxidized oil were due to an inhibition of the activation of SREBP-2 by an upregulation of Insig, which in turn inhibited transcription of proteins involved in hepatic cholesterol synthesis and uptake.
Collapse
Affiliation(s)
- Alexander Koch
- Institute of Agricultural and Nutritional Sciences, Martin Luther University, D-06108 Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Dietary oils--tuna, salmon, cod liver, soybean, olive, and corn oils--were treated with accelerated storage conditions (60 degrees C for 3 and 7 d) and a cooking condition (200 degrees C for 1 h). Genotoxic malonaldehyde (MA), glyoxal, and methylglyoxal formed in the oils were analyzed by GC. Salmon oil produced the greatest amount of MA (1070+/-77.0 ppm of oil) when it was heated at 60 degrees C for 7 d. The highest formation of glyoxal was obtained from salmon oil heated at 60 degrees C for 3 d. More glyoxal was found from salmon and cod liver oils when they were heated for 3 d (12.8+/-1.10 and 7.07+/-0.19 ppm, respectively) than for 7 d (6.70+/-0.08 and 5.94+/-0.38 ppm, respectively), suggesting that glyoxal underwent secondary reactions during a prolonged time. The amount of methyglyoxal formed ranged from 2.03+/-0.13 (cod liver oil) to 2.89+/-0.11 ppm (tuna oil) in the fish oils heated at 60 degrees C for 7 d. Among vegetable oils, only olive oil yielded methylglyoxal (0.61+/-0.03 ppm) under accelerated storage conditions. When oils were treated under cooking conditions, the aldehydes formed were comparable to those formed under accelerated storage conditions. Fish oils produced more MA, glyoxal, and methylglyoxal than did vegetable oils because the fish oils contained higher levels of long-chain PUFA, such as EPA and DHA, than did the vegetable oils. A statistically significant correlation (P < 0.05) between the alpha-tocopherol content and the oxidation parameters was obtained from only MA and fish oils heated at 60 degrees C for 3 d.
Collapse
Affiliation(s)
- Kazutoshi Fujioka
- Department of Environmental Toxicology, University of California-Davis, Davis, California 95616, USA
| | | |
Collapse
|
20
|
Sülzle A, Hirche F, Eder K. Thermally oxidized dietary fat upregulates the expression of target genes of PPAR alpha in rat liver. J Nutr 2004; 134:1375-83. [PMID: 15173399 DOI: 10.1093/jn/134.6.1375] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oxidized fats affect animal metabolism in several ways. To gain a comprehensive understanding of the molecular mechanisms underlying the effects of dietary oxidized fats in rats at varying dietary vitamin E concentrations, the gene expression profile of the liver was monitored with an array containing 1176 binding sites for cDNAs. Rats were fed diets with a fresh fat and vitamin E concentrations of 25 or 250 mg alpha-tocopherol/kg (FF25, FF250 rats) or a fat heated at 50 degrees C for 38 d, with vitamin E concentrations of 25 or 250 mg alpha-tocopherol/kg (OF25, OF250 rats) for 63 d. Differences in gene expression were considered to be significant at a ratio of at least 1.4. In the OF25 rats, the expression of 47 genes was altered; in the OF250 rats, the expression of 37 genes was altered, and in the FF250 rats, the expression of 21 genes was altered compared with FF25 rats. In both OF25 and OF250 rats, a series of target genes of the peroxisome proliferator-activated receptor alpha (PPAR alpha) was upregulated. Determination of gene expression of acyl CoA oxidase and activity of catalase confirmed that oxidized fats caused peroxisome proliferation in the liver. In OF25 and OF250 rats, there was also upregulation of 12 and 5 genes involved in xenobiotic metabolism and stress response, of 7 and 7 genes involved in protein metabolism, of 5 and 2 genes encoding intracellular effectors or modulators and of 5 and 6 genes, respectively, encoding activators or repressors of transcription or translation. In conclusion, this study provides indirect evidence that dietary oxidized fats cause an activation of the PPAR alpha, irrespective of the dietary vitamin E concentration. Identification of several other differentially regulated genes may be helpful to understand the effects of oxidized fats on animal metabolism.
Collapse
Affiliation(s)
- Andrea Sülzle
- Institut für Ernährungswissenschaften, Martin-Luther-Universität Halle-Wittenberg, D-06108 Halle/Saale, Germany
| | | | | |
Collapse
|