1
|
Li H, Seugnet L. Decoding the nexus: branched-chain amino acids and their connection with sleep, circadian rhythms, and cardiometabolic health. Neural Regen Res 2025; 20:1350-1363. [PMID: 39075896 PMCID: PMC11624887 DOI: 10.4103/nrr.nrr-d-23-02020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/18/2024] [Accepted: 05/12/2024] [Indexed: 07/31/2024] Open
Abstract
The sleep-wake cycle stands as an integrative process essential for sustaining optimal brain function and, either directly or indirectly, overall body health, encompassing metabolic and cardiovascular well-being. Given the heightened metabolic activity of the brain, there exists a considerable demand for nutrients in comparison to other organs. Among these, the branched-chain amino acids, comprising leucine, isoleucine, and valine, display distinctive significance, from their contribution to protein structure to their involvement in overall metabolism, especially in cerebral processes. Among the first amino acids that are released into circulation post-food intake, branched-chain amino acids assume a pivotal role in the regulation of protein synthesis, modulating insulin secretion and the amino acid sensing pathway of target of rapamycin. Branched-chain amino acids are key players in influencing the brain's uptake of monoamine precursors, competing for a shared transporter. Beyond their involvement in protein synthesis, these amino acids contribute to the metabolic cycles of γ-aminobutyric acid and glutamate, as well as energy metabolism. Notably, they impact GABAergic neurons and the excitation/inhibition balance. The rhythmicity of branched-chain amino acids in plasma concentrations, observed over a 24-hour cycle and conserved in rodent models, is under circadian clock control. The mechanisms underlying those rhythms and the physiological consequences of their disruption are not fully understood. Disturbed sleep, obesity, diabetes, and cardiovascular diseases can elevate branched-chain amino acid concentrations or modify their oscillatory dynamics. The mechanisms driving these effects are currently the focal point of ongoing research efforts, since normalizing branched-chain amino acid levels has the ability to alleviate the severity of these pathologies. In this context, the Drosophila model, though underutilized, holds promise in shedding new light on these mechanisms. Initial findings indicate its potential to introduce novel concepts, particularly in elucidating the intricate connections between the circadian clock, sleep/wake, and metabolism. Consequently, the use and transport of branched-chain amino acids emerge as critical components and orchestrators in the web of interactions across multiple organs throughout the sleep/wake cycle. They could represent one of the so far elusive mechanisms connecting sleep patterns to metabolic and cardiovascular health, paving the way for potential therapeutic interventions.
Collapse
Affiliation(s)
- Hui Li
- Department of Neurology, Xijing Hospital, Xi’an, Shaanxi Province, China
| | - Laurent Seugnet
- Centre de Recherche en Neurosciences de Lyon, Integrated Physiology of the Brain Arousal Systems (WAKING), Université Claude Bernard Lyon 1, INSERM U1028, CNRS UMR 5292, Bron, France
| |
Collapse
|
2
|
Qiu S, Hu B, Zhao J, Xu W, Yang A. Seq2Topt: a sequence-based deep learning predictor of enzyme optimal temperature. Brief Bioinform 2025; 26:bbaf114. [PMID: 40079266 PMCID: PMC11904407 DOI: 10.1093/bib/bbaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/09/2025] [Accepted: 03/01/2025] [Indexed: 03/15/2025] Open
Abstract
An accurate deep learning predictor is needed for enzyme optimal temperature (${T}_{opt}$), which quantitatively describes how temperature affects the enzyme catalytic activity. In comparison with existing models, a new model developed in this study, Seq2Topt, reached a superior accuracy on ${T}_{opt}$ prediction just using protein sequences (RMSE = 12.26°C and R2 = 0.57), and could capture key protein regions for enzyme ${T}_{opt}$ with multi-head attention on residues. Through case studies on thermophilic enzyme selection and predicting enzyme ${T}_{opt}$ shifts caused by point mutations, Seq2Topt was demonstrated as a promising computational tool for enzyme mining and in-silico enzyme design. Additionally, accurate deep learning predictors of enzyme optimal pH (Seq2pHopt, RMSE = 0.88 and R2 = 0.42) and melting temperature (Seq2Tm, RMSE = 7.57 °C and R2 = 0.64) were developed based on the model architecture of Seq2Topt, suggesting that the development of Seq2Topt could potentially give rise to a useful prediction platform of enzymes.
Collapse
Affiliation(s)
- Sizhe Qiu
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| | - Bozhen Hu
- Artificial Intelligence Division, School of Engineering, Westlake University, 310030, Hangzhou, China
- Zhejiang University, 310058, Hangzhou, China
| | - Jing Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, 430062, Wuhan, China
- Tianjin Institute of Pharmaceutical Research Co. Ltd, Tianjin Binhai New Area, 300301, Tianjin, China
| | - Weiren Xu
- Tianjin Institute of Pharmaceutical Research Co. Ltd, Tianjin Binhai New Area, 300301, Tianjin, China
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, Parks Road, OX1 3PJ, Oxford, United Kingdom
| |
Collapse
|
3
|
Adhikari R, Rochell SJ, Kriseldi R, Silva M, Greiner L, Williams C, Matton B, Anderson A, Erf GF, Park E, Haydon K, Lee J. Recent advances in protein and amino acid nutritional dynamics in relation to performance, health, welfare, and cost of production. Poult Sci 2025; 104:104852. [PMID: 39965272 PMCID: PMC11879670 DOI: 10.1016/j.psj.2025.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/20/2025] Open
Abstract
Amino acids are the foundation of numerous metabolic and physiological pathways for skeletal muscle accretion, internal organ development, skeletal development, and immune function. One widely studied subject in monogastric nutrition is dietary crude protein. However, birds do not have a crude protein requirement but have a clear requirement for essential amino acids. As individual amino acid requirements of swine and poultry are investigated and modern feed formulation tools and feed-grade amino acids are available cost-effectively, the dynamics of how we look at crude protein in the feed have evolved. With the modern tools available, nutritionists are able to formulate the feed to meet the amino acids required for optimal performance of animals. This approach reduces the excess nitrogen in the feed, making the diets friendlier for the gut, reducing substrates for harmful proliferating bacteria, reducing nitrogen excretion in manure, and improving the ecology and sustainability. Apart from growth, amino acids have a functional role in the metabolic and physiological pathways. Amino acids like threonine and arginine have additional functional roles in intestinal turnover, immune function, wound healing, vasodilation and oxidative, and heat stress alleviation. Such specific amino acids can be increased in the diet to support the physiological needs during the growth of animals without increasing the unwanted dietary nitrogen content. As the industry moves toward reducing crude protein while meeting the essential amino acid needs, more research is needed to understand the requirement of specific lower limiting and non-limiting amino acids as well as the dynamics of those amino acids in health, welfare, cost of production and ecological impact in poultry and swine production.
Collapse
Affiliation(s)
- Roshan Adhikari
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA.
| | - Sam J Rochell
- Department of Poultry Science, Auburn University, Auburn, AL, USA
| | | | | | - Laura Greiner
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | | | - Bart Matton
- Research Center, CJ Europe GmbH, Frankfurt, Germany
| | | | - Gisela F Erf
- Department of Poultry Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | | | - Keith Haydon
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA
| | - Jason Lee
- CJ Bio America, 2001 Butterfield Rd. Suite 720, Downers Grove, IL 60515, USA
| |
Collapse
|
4
|
Wang J, Poskitt LE, Gallagher J, Puffenberger EG, Wynn RM, Shishodia G, Chuang DT, Beever J, Hardin DL, Brigatti KW, Baker WC, Gately R, Bertrand S, Rodrigues A, Benatti HR, Taghian T, Hall E, Prestigiacomo R, Liang J, Chen G, Zhou X, Ren L, Liu N, He R, Su Q, Xie J, Jiang Z, Gruntman A, Gray-Edwards H, Gao G, Strauss KA, Wang D. BCKDHA-BCKDHB digenic gene therapy restores metabolic homeostasis in two mouse models and a calf with classic maple syrup urine disease. Sci Transl Med 2025; 17:eads0539. [PMID: 40009698 DOI: 10.1126/scitranslmed.ads0539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 02/05/2025] [Indexed: 02/28/2025]
Abstract
Classic maple syrup urine disease (MSUD) results from biallelic mutations in genes that encode the branched-chain α-ketoacid dehydrogenase E1α (BCKDHA), E1β (BCKDHB), or dihydrolipoamide branched-chain transacylase (DBT) subunits, which interact to form the mitochondrial BCKDH complex that decarboxylates ketoacid derivatives of leucine, isoleucine, and valine. MSUD is an inborn error of metabolism characterized by recurrent life-threatening neurologic crises and progressive brain injury that can only be managed with an exacting prescription diet or allogeneic liver transplant. To develop a gene replacement therapy for MSUD, we designed a dual-function recombinant adeno-associated virus serotype 9 (rAAV9) vector to deliver codon-optimized BCKDHA and BCKDHB (rAAV9.hA-BiP-hB) to the liver, muscle, heart, and brain. rAAV9.hA-BiP-hB restored coexpression of BCKDHA and BCKDHB as well as BCKDH holoenzyme activity in BCKDHA-/- HEK293T cells and did not perturb physiologic branched-chain amino acid homeostasis in wild-type mice at a systemic dose of 2.7 × 1014 vector genomes per kilogram. In two models of severe MSUD (Bckdha-/- and Bckdhb-/- mice) and a newborn calf homozygous for BCKDHA c.248C>T, one postnatal injection prevented perinatal death, normalized growth, restored coordinated expression of BCKDHA and BCKDHB in the skeletal muscle, liver, heart, and brain, and stabilized MSUD biomarkers in the face of high protein ingestion. In summary, we developed a one-time BCKDHA-BCKDHB systemic dual-gene replacement strategy that holds promise as a therapeutic alternative to prescription diet and liver transplant for treatment of MSUD types 1A and 1B, the two most common forms of MSUD in humans.
Collapse
Affiliation(s)
- Jiaming Wang
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - Jillian Gallagher
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | | | - R Max Wynn
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Gauri Shishodia
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - David T Chuang
- Department of Biochemistry, University of Texas Southwestern Medical School, Dallas, TX 75390, USA
| | - Jonathan Beever
- Department of Animal Science and Large Animal Clinical Sciences, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | | | | | - William C Baker
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rachael Gately
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Stephanie Bertrand
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | | | - Hector R Benatti
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Toloo Taghian
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erin Hall
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rachel Prestigiacomo
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jialing Liang
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gong Chen
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Xuntao Zhou
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lingzhi Ren
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nan Liu
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Ran He
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Qin Su
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jun Xie
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zhong Jiang
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Alisha Gruntman
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Heather Gray-Edwards
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Tufts University Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA
| | - Guangping Gao
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Kevin A Strauss
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Clinic for Special Children, Gordonville, PA 17529, USA
| | - Dan Wang
- Department of Genetic and Cellular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Goo D, Kim WK. Valine deficiency has a greater impact on broiler growth and bone health than isoleucine deficiency. Poult Sci 2025; 104:104742. [PMID: 39793241 PMCID: PMC11954805 DOI: 10.1016/j.psj.2024.104742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/22/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Valine and isoleucine are not only two of the indispensable amino acids (AAs) in chickens but also have special mechanisms with leucine within the branched-chain AA (BCAA) category. Therefore, we aimed to investigate how valine or isoleucine deficiency could specifically affect growth performance in broilers through various analyses. A total of 252 seven-day (d)-old male Cobb 500 broilers were allotted to three treatments with six replicates and reared until d 21. The three treatments were as follows: (1) Control group (CON; 1.31 leucine:lysine ratio), (2) valine deficiency group (-VAL; 0.62 valine:lysine ratio and 85% valine level compared to the CON group), and (3) isoleucine deficiency group (-ILE; 0.54 isoleucine:lysine ratio and 85% isoleucine level compared to the CON group). The -VAL group had significantly decreased d 7, 14, and 21 body weight (BW), BW gain (BWG), feed intake (FI), and feed efficiency from d 7 to 21 compared to the CON and -ILE groups (P < 0.001). The -ILE group showed no difference in d 14 and 18 BW; however, they showed significantly reduced BW and BWG at d 21 and feed efficiency from d 7 to 21 compared to the CON group (P < 0.001). Daily FI in the -VAL group significantly decreased from the beginning compared to the two groups, and this gap further expanded until d 21. The -VAL group also had significantly decreased breast muscle weight, total tissue weight, bone mineral density, bone mineral content, and walking ability (P < 0.01). The expression levels of mechanistic target of rapamycin and BCAA catabolism-related genes were highest in the -VAL group (P < 0.05), whereas the -ILE group did not show any difference compared to the CON group (P > 0.05). In conclusion, about 85% valine deficiency is accompanied by a substantial reduction in chicken growth, which has a much greater effect than isoleucine. Valine deficiency can also lead to increased utilization of leucine, which may result in BCAA antagonism.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
6
|
Mansoori S, Ho MY, Ng KK, Cheng KK. Branched-chain amino acid metabolism: Pathophysiological mechanism and therapeutic intervention in metabolic diseases. Obes Rev 2025; 26:e13856. [PMID: 39455059 PMCID: PMC11711082 DOI: 10.1111/obr.13856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 09/02/2024] [Accepted: 10/01/2024] [Indexed: 10/28/2024]
Abstract
Branched-chain amino acids (BCAAs), including leucine, isoleucine, and valine, are essential for maintaining physiological functions and metabolic homeostasis. However, chronic elevation of BCAAs causes metabolic diseases such as obesity, type 2 diabetes (T2D), and metabolic-associated fatty liver disease (MAFLD). Adipose tissue, skeletal muscle, and the liver are the three major metabolic tissues not only responsible for controlling glucose, lipid, and energy balance but also for maintaining BCAA homeostasis. Under obese and diabetic conditions, different pathogenic factors like pro-inflammatory cytokines, lipotoxicity, and reduction of adiponectin and peroxisome proliferator-activated receptors γ (PPARγ) disrupt BCAA metabolism, leading to excessive accumulation of BCAAs and their downstream metabolites in metabolic tissues and circulation. Mechanistically, BCAAs and/or their downstream metabolites, such as branched-chain ketoacids (BCKAs) and 3-hydroxyisobutyrate (3-HIB), impair insulin signaling, inhibit adipogenesis, induce inflammatory responses, and cause lipotoxicity in the metabolic tissues, resulting in multiple metabolic disorders. In this review, we summarize the latest studies on the metabolic regulation of BCAA homeostasis by the three major metabolic tissues-adipose tissue, skeletal muscle, and liver-and how dysregulated BCAA metabolism affects glucose, lipid, and energy balance in these active metabolic tissues. We also summarize therapeutic approaches to restore normal BCAA metabolism as a treatment for metabolic diseases.
Collapse
Affiliation(s)
- Shama Mansoori
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Melody Yuen‐man Ho
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kelvin Kwun‐wang Ng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
| | - Kenneth King‐yip Cheng
- Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong Kong, China
- Hong Kong Polytechnic University Shenzhen Research InstituteShenzhenChina
| |
Collapse
|
7
|
François AC, Cesarini C, Taminiau B, Renaud B, Kruse CJ, Boemer F, van Loon G, Palmers K, Daube G, Wouters CP, Lecoq L, Gustin P, Votion DM. Unravelling Faecal Microbiota Variations in Equine Atypical Myopathy: Correlation with Blood Markers and Contribution of Microbiome. Animals (Basel) 2025; 15:354. [PMID: 39943124 PMCID: PMC11815872 DOI: 10.3390/ani15030354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/15/2025] [Accepted: 01/18/2025] [Indexed: 02/16/2025] Open
Abstract
Hypoglycin A and methylenecyclopropylglycine are protoxins responsible for atypical myopathy in equids. These protoxins are converted into toxins that inhibit fatty acid β-oxidation, leading to blood accumulation of acylcarnitines and toxin conjugates, such as methylenecyclopropylacetyl-carnitine. The enzymes involved in this activation are also present in some prokaryotic cells, raising questions about the potential role of intestinal microbiota in the development of intoxication. Differences have been noted between the faecal microbiota of cograzers and atypical myopathy-affected horses. However, recent blood acylcarnitines profiling revealed subclinical cases among cograzers, challenging their status as a control group. This study investigates the faecal microbiota of horses clinically affected by atypical myopathy, their cograzers, and a control group of toxin-free horses while analysing correlations between microbiota composition and blood parameters. Faecal samples were analysed using 16S amplicon sequencing, revealing significant differences in α-diversity, evenness, and β-diversity. Notable differences were found between several genera, especially Clostridia_ge, Bacteria_ge, Firmicutes_ge, Fibrobacter, and NK4A214_group. Blood levels of methylenecyclopropylacetyl-carnitine and C14:1 correlated with variations in faecal microbial composition. The theoretical presence of enzymes in bacterial populations was also investigated. These results underscore the critical need to investigate the potential role of intestinal microbiota in this poisoning and may provide insights for developing prevention and treatment strategies.
Collapse
Affiliation(s)
- Anne-Christine François
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Carla Cesarini
- Equine Clinical Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (C.C.); (L.L.)
| | - Bernard Taminiau
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Benoît Renaud
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Caroline-Julia Kruse
- Department of Functional Sciences, Faculty of Veterinary Medicine, Physiology and Sport Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium;
| | - François Boemer
- Biochemical Genetics Laboratory, CHU, University of Liège, 4000 Liège, Belgium;
| | - Gunther van Loon
- Department of Internal Medicine, Reproduction and Population Medicine, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium;
| | | | - Georges Daube
- Department of Food Sciences–Microbiology, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.T.); (G.D.)
| | - Clovis P. Wouters
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Laureline Lecoq
- Equine Clinical Department, Faculty of Veterinary Medicine, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (C.C.); (L.L.)
| | - Pascal Gustin
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| | - Dominique-Marie Votion
- Department of Functional Sciences, Faculty of Veterinary Medicine, Pharmacology and Toxicology, Fundamental and Applied Research for Animals & Health (FARAH), University of Liège, 4000 Liège, Belgium; (B.R.); (P.G.); (D.-M.V.)
| |
Collapse
|
8
|
Soengas JL, Comesaña S, Blanco AM, Conde-Sieira M. Feed Intake Regulation in Fish: Implications for Aquaculture. REVIEWS IN FISHERIES SCIENCE & AQUACULTURE 2025; 33:8-60. [DOI: 10.1080/23308249.2024.2374259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- José L. Soengas
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Sara Comesaña
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Ayelén M. Blanco
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Marta Conde-Sieira
- Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Laboratorio de Fisioloxía Animal, Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| |
Collapse
|
9
|
Deng X, Tang C, Fang T, Li T, Li X, Liu Y, Zhang X, Sun B, Sun H, Chen L. Disruption of branched-chain amino acid homeostasis promotes the progression of DKD via enhancing inflammation and fibrosis-associated epithelial-mesenchymal transition. Metabolism 2025; 162:156037. [PMID: 39317264 DOI: 10.1016/j.metabol.2024.156037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND AND AIMS The disrupted homeostasis of branched-chain amino acids (BCAAs, including leucine, isoleucine, and valine) has been strongly correlated with diabetes with a potential causal role. However, the relationship between BCAAs and diabetic kidney disease (DKD) remains to be established. Here, we show that the elevated BCAAs from BCAAs homeostatic disruption promote DKD progression unexpectedly as an independent risk factor. METHODS AND RESULTS Similar to other tissues, the suppressed BCAAs catabolic gene expression and elevated BCAAs abundance were detected in the kidneys of type 2 diabetic mice and individuals with DKD. Genetic and nutritional studies demonstrated that the elevated BCAAs from systemic disruption of BCAAs homeostasis promoted the progression of DKD. Of note, the elevated BCAAs promoted DKD progression without exacerbating diabetes in the animal models of type 2 DKD. Mechanistic studies demonstrated that the elevated BCAAs promoted fibrosis-associated epithelial-mesenchymal transition (EMT) by enhancing the activation of proinflammatory macrophages through mTOR signaling. Furthermore, pharmacological enhancement of systemic BCAAs catabolism using small molecule inhibitor attenuated type 2 DKD. Finally, the elevated BCAAs also promoted DKD progression in type 1 diabetic mice without exacerbating diabetes. CONCLUSION BCAA homeostatic disruption serves as an independent risk factor for DKD and restoring BCAA homeostasis pharmacologically or dietarily represents a promising therapeutic strategy to ameliorate the progression of DKD.
Collapse
Affiliation(s)
- Xiaoqing Deng
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Chao Tang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Affiliated Huzhou Hospital, Zhejiang University School of Medicine, China
| | - Ting Fang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Ting Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xiaoyu Li
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Yajin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Xuejiao Zhang
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Bei Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China
| | - Haipeng Sun
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China; Center for Cardiovascular Diseases, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| | - Liming Chen
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Chu Hsien-I Memorial Hospital & Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin 300134, China.
| |
Collapse
|
10
|
Zhang C, Huang DL, Zhou K, Cai JT, Liu D, Tan MH, Zhu GY, Wu XH. Human blood metabolites and gastric cancer: a Mendelian randomization analysis. BMC Gastroenterol 2024; 24:478. [PMID: 39736510 DOI: 10.1186/s12876-024-03576-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 12/22/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Gastric cancer (GC) remains one of the predominant malignant tumors within the digestive tract, yet its underlying biological mechanisms remain elusive. The primary objective of this study is to delineate the causal relationship between circulating metabolites and GC. METHOD The primary Mendelian randomization (MR) analysis was based on three large GWAS datasets. While the inverse variance weighted served as the primary analysis technique for investigating causal relationships, additional sensitivity analyses were facilitated through methods such as MR-PRESSO, the weighted median, and MR-Egger. Subsequently, replication, meta-analysis, and multivariable MR were executed using another GC GWAS. RESULTS The results of this study indicated significant associations between three metabolites 3-methyl-2-oxovalerate (OR 5.8, 95%CI: 1.53-22.05, p = 0.0099), piperine (OR 2.05, 95%CI: 1.13-3.7, p = 0.0175), Phe-Phe dipeptide (OR 0.16, 95%CI: 0.03-0.93, p = 0.0409) and GC. CONCLUSION The present study provides evidence supporting a causal relationship between these three circulating metabolites and GC risk. Elevated levels of 3-methyl-2-oxovalerate and piperine may increase the risk of GC, while Phe-Phe dipeptide may have a protective effect. By integrating genomics and metabolomics, we offer a novel perspective on the biological mechanisms underlying GC. Such insights have the potential to enhance strategies for the screening, prevention, and treatment of GC.
Collapse
Affiliation(s)
- Chao Zhang
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Dao Lai Huang
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Kun Zhou
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Jin Tao Cai
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Dang Liu
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Ming Hao Tan
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Guan Yu Zhu
- Guangxi Medical University, Nanning, 530021, Guangxi, China
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China
| | - Xiang Hua Wu
- Guangxi Medical University, Nanning, 530021, Guangxi, China.
- Guangxi Key Laboratory of Enhanced Recovery After Surgery for Gastrointestinal Cancer, Nanning, 530021, Guangxi, China.
- Department of Gastrointestinal Gland Surgery, The First Affiliated Hospital of Guangxi Medical University, Qingxiu District Nanning, 22 Shuangyong Road, Guangxi, 530021, China.
| |
Collapse
|
11
|
Bo T, Fujii J. Primary Roles of Branched Chain Amino Acids (BCAAs) and Their Metabolism in Physiology and Metabolic Disorders. Molecules 2024; 30:56. [PMID: 39795113 PMCID: PMC11721030 DOI: 10.3390/molecules30010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Leucine, isoleucine, and valine are collectively known as branched chain amino acids (BCAAs) and are often discussed in the same physiological and pathological situations. The two consecutive initial reactions of BCAA catabolism are catalyzed by the common enzymes referred to as branched chain aminotransferase (BCAT) and branched chain α-keto acid dehydrogenase (BCKDH). BCAT transfers the amino group of BCAAs to 2-ketoglutarate, which results in corresponding branched chain 2-keto acids (BCKAs) and glutamate. BCKDH performs an oxidative decarboxylation of BCKAs, which produces their coenzyme A-conjugates and NADH. BCAT2 in skeletal muscle dominantly catalyzes the transamination of BCAAs. Low BCAT activity in the liver reduces the metabolization of BCAAs, but the abundant presence of BCKDH promotes the metabolism of muscle-derived BCKAs, which leads to the production of glucose and ketone bodies. While mutations in the genes responsible for BCAA catabolism are involved in rare inherited disorders, an aberrant regulation of their enzymatic activities is associated with major metabolic disorders such as diabetes, cardiovascular disease, and cancer. Therefore, an understanding of the regulatory process of metabolic enzymes, as well as the functions of the BCAAs and their metabolites, make a significant contribution to our health.
Collapse
Affiliation(s)
- Tomoki Bo
- Laboratory Animal Center, Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
12
|
Wu Y, Avcilar-Kücükgöze I, Santovito D, Atzler D. Amino Acid Metabolism and Autophagy in Atherosclerotic Cardiovascular Disease. Biomolecules 2024; 14:1557. [PMID: 39766264 PMCID: PMC11673637 DOI: 10.3390/biom14121557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025] Open
Abstract
Cardiovascular disease is the most common cause of mortality globally, accounting for approximately one out of three deaths. The main underlying pathology is atherosclerosis, a dyslipidemia-driven, chronic inflammatory disease. The interplay between immune cells and non-immune cells is of great importance in the complex process of atherogenesis. During atheroprogression, intracellular metabolic pathways, such as amino acid metabolism, are master switches of immune cell function. Autophagy, an important stress survival mechanism involved in maintaining (immune) cell homeostasis, is crucial during the development of atherosclerosis and is strongly regulated by the availability of amino acids. In this review, we focus on the interplay between amino acids, especially L-leucine, L-arginine, and L-glutamine, and autophagy during atherosclerosis development and progression, highlighting potential therapeutic perspectives.
Collapse
Affiliation(s)
- Yuting Wu
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
| | - Irem Avcilar-Kücükgöze
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Donato Santovito
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Institute for Genetic and Biomedical Research (IRGB), Unit of Milan, National Research Council, 20133 Milan, Italy
| | - Dorothee Atzler
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-Universität München, 80336 Munich, Germany; (Y.W.); (I.A.-K.)
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
- Walter Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität München, 80336 Munich, Germany
| |
Collapse
|
13
|
Goo D, Lee J, Paneru D, Sharma MK, Rafieian-Naeini HR, Mahdavi FS, Gyawali I, Gudidoddi SR, Han G, Kim WK. Effects of branched-chain amino acid imbalance and dietary valine and isoleucine supplementation in modified corn-soybean meal diets with corn distillers dried grains with solubles on growth performance, carcass quality, intestinal health, and cecal microbiome in Cobb 500. Poult Sci 2024; 103:104483. [PMID: 39510006 PMCID: PMC11577229 DOI: 10.1016/j.psj.2024.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
One important feature of corn distillers dried grains with solubles (DDGS) is its high leucine:lysine ratio, which can inhibit chicken growth by causing branched-chain amino acid (BCAA) antagonism. The current study was conducted to investigate the effects of BCAA imbalance of inclusion of DDGS and whether additional dietary valine and isoleucine could alleviate the negative effects in broilers. A total of 640 0-d-old male Cobb 500 broilers were allocated into 4 treatments with 8 replicates and reared until d 42. The four different dietary groups were as follows: 1) control (CON) group (corn-soybean meal-based diet); 2) 30% DDGS (30D) group (replacing soybean meal with 30% DDGS); 3) 30D + additional valine and isoleucine (30DB) group; and 4) the group of 30DB + additional valine and isoleucine to provide the same leucine:valine and leucine:isoleucine ratios as the CON group (30DBB). The analyzed leucine:lysine ratios of the CON group were 1.36/1.41/1.46 (starter/grower/finisher phase), whereas the average leucine:lysine ratios of the 30% DDGS groups were 1.61/1.70/1.78 (starter/grower/finisher phase). The 30% DDGS groups (30D, 30DB, and 30DBB) negatively affected body weight (BW) from d 7 to 42 and BW gain (BWG), feed intake, carcass weight, breast muscle weight, and jejunal and ileal villus height:crypt depth during the overall period (d 0 to 42) (P < 0.05). Furthermore, the 30% DDGS groups significantly altered expression levels of jejunal tight junction proteins, breast muscle mechanistic target of rapamycin (mTOR) pathway-related genes, BCAA catabolism genes, and AA transporters compared to the CON (P < 0.01). The 30% DDGS groups showed differences in beta-diversity indices compared to the CON group (P < 0.05). The 30DBB group showing the lowest d 21 and 42 BW and overall BWG had the largest differences compared to the CON group in most measurements. In conclusion, excessive replacement of soybean meal with DDGS can significantly increase leucine levels, which may negatively affect chicken growth. Additionally, inappropriate ratios of valine and isoleucine can further decrease growth performance.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Fatemeh S Mahdavi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Ishwari Gyawali
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | | | - Gippeum Han
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, United States.
| |
Collapse
|
14
|
Knol MGE, Wulfmeyer VC, Müller RU, Rinschen MM. Amino acid metabolism in kidney health and disease. Nat Rev Nephrol 2024; 20:771-788. [PMID: 39198707 DOI: 10.1038/s41581-024-00872-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 09/01/2024]
Abstract
Amino acids form peptides and proteins and are therefore considered the main building blocks of life. The kidney has an important but under-appreciated role in the synthesis, degradation, filtration, reabsorption and excretion of amino acids, acting to retain useful metabolites while excreting potentially harmful and waste products from amino acid metabolism. A complex network of kidney transporters and enzymes guides these processes and moderates the competing concentrations of various metabolites and amino acid products. Kidney amino acid metabolism contributes to gluconeogenesis, nitrogen clearance, acid-base metabolism and provision of fuel for tricarboxylic acid cycle and urea cycle intermediates, and is thus a central hub for homeostasis. Conversely, kidney disease affects the levels and metabolism of a variety of amino acids. Here, we review the metabolic role of the kidney in amino acid metabolism and describe how different diseases of the kidney lead to aberrations in amino acid metabolism. Improved understanding of the metabolic and communication routes that are affected by disease could provide new mechanistic insights into the pathogenesis of kidney diseases and potentially enable targeted dietary or pharmacological interventions.
Collapse
Affiliation(s)
- Martine G E Knol
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Roman-Ulrich Müller
- Department II of Internal Medicine and Center for Molecular Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Markus M Rinschen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.
- III Department of Medicine, University Medical Center Hamburg Eppendorf, Hamburg, Germany.
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark.
- Hamburg Center for Kidney Health, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
15
|
Kaspy MS, Hannaian SJ, Bell ZW, Churchward-Venne TA. The effects of branched-chain amino acids on muscle protein synthesis, muscle protein breakdown and associated molecular signalling responses in humans: an update. Nutr Res Rev 2024; 37:273-286. [PMID: 37681443 DOI: 10.1017/s0954422423000197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Branched-chain amino acids (BCAA: leucine, isoleucine and valine) are three of the nine indispensable amino acids, and are frequently consumed as a dietary supplement by athletes and recreationally active individuals alike. The popularity of BCAA supplements is largely predicated on the notion that they can stimulate rates of muscle protein synthesis (MPS) and suppress rates of muscle protein breakdown (MPB), the combination of which promotes a net anabolic response in skeletal muscle. To date, several studies have shown that BCAA (particularly leucine) increase the phosphorylation status of key proteins within the mechanistic target of rapamycin (mTOR) signalling pathway involved in the regulation of translation initiation in human muscle. Early research in humans demonstrated that BCAA provision reduced indices of whole-body protein breakdown and MPB; however, there was no stimulatory effect of BCAA on MPS. In contrast, recent work has demonstrated that BCAA intake can stimulate postprandial MPS rates at rest and can further increase MPS rates during recovery after a bout of resistance exercise. The purpose of this evidence-based narrative review is to critically appraise the available research pertaining to studies examining the effects of BCAA on MPS, MPB and associated molecular signalling responses in humans. Overall, BCAA can activate molecular pathways that regulate translation initiation, reduce indices of whole-body and MPB, and transiently stimulate MPS rates. However, the stimulatory effect of BCAA on MPS rates is less than the response observed following ingestion of a complete protein source providing the full complement of indispensable amino acids.
Collapse
Affiliation(s)
- Matthew S Kaspy
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Sarkis J Hannaian
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| | - Zachary W Bell
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
| | - Tyler A Churchward-Venne
- Department of Kinesiology and Physical Education, McGill University, 475 Avenue Des Pins H2W 1S4, Montreal, QC, Canada
- Division of Geriatric Medicine, McGill University, Montreal General Hospital, Room D6 237.F, 1650 Cedar Avenue, H3G 1A4, Montreal, QC, Canada
- Research Institute of the McGill University Health Centre, Glen Site, 1001 Boul. Décarie, H4A 3J1 Montreal, QC, Canada
| |
Collapse
|
16
|
Goo D, Singh AK, Choi J, Sharma MK, Paneru D, Lee J, Katha HR, Zhuang H, Kong B, Bowker B, Kim WK. Different dietary branched-chain amino acid ratios, crude protein levels, and protein sources can affect the growth performance and meat yield in broilers. Poult Sci 2024; 103:104313. [PMID: 39357235 PMCID: PMC11474198 DOI: 10.1016/j.psj.2024.104313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024] Open
Abstract
Balanced ratios of branched-chain amino acids (BCAAs) can enhance chicken growth, immunity, and muscle synthesis. However, these ratios can be affected by changes in crude protein (CP) levels or the substitution of protein sources, leading to BCAA antagonism. This, in turn, can have a negative impact on chicken growth. In Experiment 1, a total of 960 0-d-old male Cobb 500 broilers were divided into 6 treatments with 8 replicates. Three different BCAA ratios were used in High or Low CP diets as follows: 1) Low Leu group (Low level of leucine with increased valine and isoleucine levels), 2) Med Leu group, and 3) High Leu group (High level of leucine with reduced valine and isoleucine levels) for a total of 6 diets. In Experiment 2, a total of 640 0-d-old male Cobb 500 broilers were divided into 4 treatments with 8 replicates. The four diets had either High or Low CP and one of two protein sources with the same medium levels of BCAAs: 1) the soybean meal (SBM) group, which had SBM as the main protein source (protein bound AA), and 2) the wheat middlings with non-bound AAs (WM+AA) group (non-bound AA), which had additional non-bound AAs to replace SBM. The High Leu diet had a negative effect on overall growth performance, carcass weight, breast muscle weight, and body mineral composition compared to the Low Leu and Med Leu groups, particularly in the High CP diet (P < 0.05). The SBM group showed increased growth performance, breast muscle weight, expression levels of genes promoting muscle growth, and improved bone mineral composition compared to the WM+AA group, and the High CP group intensified the negative effect of the WM+AA diet (P < 0.05). In summary, balanced BCAA ratios and SBM-based diets have positive effects on chicken growth and muscle accretion, whereas excessive leucine and non-bound AA levels in the diets may negatively affect growth performance and meat yield in chickens.
Collapse
Affiliation(s)
- Doyun Goo
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Amit K Singh
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Janghan Choi
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Milan K Sharma
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Deependra Paneru
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Jihwan Lee
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hemanth R Katha
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Hong Zhuang
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Byungwhi Kong
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Brian Bowker
- US National Poultry Research Center, USDA-ARS, Athens, GA, USA
| | - Woo Kyun Kim
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
17
|
Li Z, Chen S, Wu X, Liu F, Zhu J, Chen J, Lu X, Chi R. Research advances in branched-chain amino acid metabolism in tumors. Mol Cell Biochem 2024. [DOI: 10.1007/s11010-024-05163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/10/2024] [Indexed: 01/06/2025]
|
18
|
Qin C, Yang G, Wei Q, Xin H, Ding J, Chen X. Multidimensional Role of Amino Acid Metabolism in Immune Regulation: From Molecular Mechanisms to Therapeutic Strategies. Chem Res Chin Univ 2024. [DOI: 10.1007/s40242-024-4180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/28/2024] [Indexed: 01/03/2025]
|
19
|
Li Y, Ma L, He R, Teng F, Qin X, Liang X, Wang J. Pregnancy Metabolic Adaptation and Changes in Placental Metabolism in Preeclampsia. Geburtshilfe Frauenheilkd 2024; 84:1033-1042. [PMID: 39524034 PMCID: PMC11543110 DOI: 10.1055/a-2403-4855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/24/2024] [Indexed: 11/16/2024] Open
Abstract
Pregnancy is a unique physiological state in which the maternal body undergoes a series of changes in the metabolism of glucose, lipids, amino acids, and other nutrients in order to adapt to the altered state of pregnancy and provide adequate nutrients for the fetus' growth and development. The metabolism of various nutrients is regulated by one another in order to maintain homeostasis in the body. Failure to adapt to the altered physiological conditions of pregnancy can lead to a range of pregnancy issues, including fetal growth limitation and preeclampsia. A failure of metabolic adaptation during pregnancy is linked to the emergence of preeclampsia. The treatment of preeclampsia by focusing on metabolic changes may provide new therapeutic alternatives.
Collapse
Affiliation(s)
- Yaxi Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ling Ma
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Ruifen He
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Fei Teng
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xue Qin
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xiaolei Liang
- Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province, Lanzhou, China
| | - Jing Wang
- The First Clinical Medical College of Lanzhou University, the First Hospital of Lanzhou University, Lanzhou City, Gansu Province, China
| |
Collapse
|
20
|
Carvalho BFDC, Faria NDC, Silva KCS, Greenfield E, Alves MGO, Dias M, Mendes MA, Pérez-Sayáns M, Almeida JD. Salivary Metabolic Pathway Alterations in Brazilian E-Cigarette Users. Int J Mol Sci 2024; 25:11750. [PMID: 39519301 PMCID: PMC11546306 DOI: 10.3390/ijms252111750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/22/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
In recent years, the use of electronic cigarettes (e-cigs) has increased. However, their long-term effects on oral health and saliva remain poorly understood. Therefore, this study aimed to evaluate the saliva of e-cig users and investigate possible biomarkers. Participants were divided into two groups: the Electronic Cigarette Group (EG)-25 regular and exclusive e-cig users-and Control Group (CG)-25 non-smokers and non-e-cig users, matched in sex and age to the EG. The clinical analysis included the following parameters: age, sex, heart rate, oximetry, capillary blood glucose, carbon monoxide (CO) concentration in exhaled air, and alcohol use disorder identification test (AUDIT). Qualitative and quantitative analyses of saliva included sialometry, viscosity, pH, and cotinine concentrations. Furthermore, the EG and CG salivary metabolomes were compared using gas chromatography coupled with mass spectrometry (GC-MS). Data were analyzed using the Mann-Whitney test. The MetaboAnalyst 6.0 software was used for statistical analysis and biomarker evaluation. The EG showed high means for exhaled CO concentration and AUDIT but lower means for oximetry and salivary viscosity. Furthermore, 10 metabolites (isoleucine, 2-hydroxyglutaric acid, 3-phenyl-lactic acid, linoleic acid, 3-hydroxybutyric acid, 1,6-anhydroglucose, glucuronic acid, valine, stearic acid, and elaidic acid) were abundant in EG but absent in CG. It was concluded that e-cig users had high rates of alcohol consumption and experienced significant impacts on their general health, including increased cotinine and CO concentration in exhaled air, decreased oximetry, and low salivary viscosity. Furthermore, they showed a notable increase in salivary metabolites, especially those related to inflammation, xenobiotic metabolism, and biomass-burning pathways.
Collapse
Affiliation(s)
- Bruna Fernandes do Carmo Carvalho
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Natalia de Carvalho Faria
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Kethilyn Chris Sousa Silva
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Ellen Greenfield
- Technology Research Center (NPT), Universidade Mogi das Cruzes, Mogi das Cruzes 08780-911, São Paulo, Brazil
| | - Mônica Ghislaine Oliveira Alves
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| | - Meriellen Dias
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Maria Anita Mendes
- Dempster MS Lab, Department of Chemical Engineering, Polytechnic School, University of São Paulo, São Paulo 05508-040, São Paulo, Brazil
| | - Mario Pérez-Sayáns
- Oral Medicine, Oral Surgery and Implantology Unit (MedOralRes), Faculty of Medicine and Dentistry, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- ORALRES Group, Instituto de Investigación Sanitaria de Santiago (IDIS), 15782 Santiago de Compostela, Spain
- Instituto de los Materiales de Santiago de Compostela (iMATUS), 15782 Santiago de Compostela, Spain
| | - Janete Dias Almeida
- Instituto de Ciência e Tecnologia, Universidade Estadual Paulista (UNESP), Câmpus São José dos Campos, Av. Eng. Francisco José Longo, 777, São Dimas, São José dos Campos 12245-000, São Paulo, Brazil; (B.F.d.C.C.)
| |
Collapse
|
21
|
Mann G, Adegoke OAJ. Elevated BCAA catabolism reverses the effect of branched-chain ketoacids on glucose transport in mTORC1-dependent manner in L6 myotubes. J Nutr Sci 2024; 13:e66. [PMID: 39464407 PMCID: PMC11503859 DOI: 10.1017/jns.2024.66] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024] Open
Abstract
Plasma levels of branched-chain amino acids (BCAA) and their metabolites, branched-chain ketoacids (BCKA), are increased in insulin resistance. We previously showed that ketoisocaproic acid (KIC) suppressed insulin-stimulated glucose transport in L6 myotubes, especially in myotubes depleted of branched-chain ketoacid dehydrogenase (BCKD), the enzyme that decarboxylates BCKA. This suggests that upregulating BCKD activity might improve insulin sensitivity. We hypothesised that increasing BCAA catabolism would upregulate insulin-stimulated glucose transport and attenuate insulin resistance induced by BCKA. L6 myotubes were either depleted of BCKD kinase (BDK), the enzyme that inhibits BCKD activity, or treated with BT2, a BDK inhibitor. Myotubes were then treated with KIC (200 μM), leucine (150 μM), BCKA (200 μM), or BCAA (400 μM) and then treated with or without insulin (100 nM). BDK depletion/inhibition rescued the suppression of insulin-stimulated glucose transport by KIC/BCKA. This was consistent with the attenuation of IRS-1 (Ser612) and S6K1 (Thr389) phosphorylation but there was no effect on Akt (Ser473) phosphorylation. The effect of leucine or BCAA on these measures was not as pronounced and BT2 did not influence the effect. Induction of the mTORC1/IRS-1 (Ser612) axis abolished the attenuating effect of BT2 treatment on glucose transport in cells treated with KIC. Surprisingly, rapamycin co-treatment with BT2 and KIC further reduced glucose transport. Our data suggests that the suppression of insulin-stimulated glucose transport by KIC/BCKA in muscle is mediated by mTORC1/S6K1 signalling. This was attenuated by upregulating BCAA catabolic flux. Thus, interventions targeting BCAA metabolism may provide benefits against insulin resistance and its sequelae.
Collapse
Affiliation(s)
- Gagandeep Mann
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| | - Olasunkanmi A. John Adegoke
- School of Kinesiology and Health Science and Muscle Health Research Centre, York University, Toronto, ON, Canada
| |
Collapse
|
22
|
Humphrey DC, Haydon KD, Greiner LL. Effect of various levels of standardized ileal digestible branched-chain amino acids on lactating sow and litter performance. Transl Anim Sci 2024; 8:txae148. [PMID: 39463886 PMCID: PMC11503212 DOI: 10.1093/tas/txae148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024] Open
Abstract
Three hundred and sixty sows were used to investigate the effect of various dietary branched-chain amino acids (BCAA) levels on sow lactation and piglet growth performance. On day 112 ± 1.4 of gestation, sows were blocked by the parity group (P1, P2, P3+) and randomly assigned to 1 of 6 dietary treatments containing various levels of standardized ileal digestible (SID) Leu, Ile, and Val. The experimental diets were formulated to the desired levels of BCAA by replacing cornstarch in a basal diet with l-leucine, l-isoleucine, and l-valine. Dietary BCAA levels relative to SID Lys were 114% or 180% for Leu, 56% or 64% for Ile, and 64% or 120% for Val. Diets were formulated to be isocaloric (3.23 Mcal ME/kg) and met or exceeded all other NRC (2012) essential amino acid and vitamin and mineral recommendations. Sow body weight (BW) and backfat thickness were measured at the time of entry into the farrowing room and at weaning. Piglet litter weights were recorded after cross-fostering and weaning to calculate the litter growth rate. Data were analyzed using generalized linear mixed models with fixed effects of dietary treatment and parity group and a random effect of lactation group. The models were fit using R (v4.4.1; R Core Team, 2024). The sow and her litter were the experimental unit, and results were considered significant if P < 0.05. On average, sows nursed their litters for 21.3 d (P = 0.998). The mean parity by treatment ranged from 3.8 to 3.9 (P = 0.999). After farrowing, the mean sow BW was 220 kg with a range between treatments of 216 to 222 kg (P = 0.523). On average, sows gained 2.3% of their BW (P = 0.740) with an average daily feed intake of 8.74 kg/d (P = 0.903). As expected, sow Leu, Ile, and Val intakes were different across treatments (P ≤ 0.001) and corresponded to the varying dietary levels of BCAA. Sows entered farrowing with an average backfat thickness of 11.50 mm (P = 0.919) and lost 6.5% backfat through lactation (P = 0.880). Sows started the trial with an average of 14.1 piglets/sow (P = 0.967) and weaned 12.7 piglets/sow (P = 0.995) with a piglet ADG of 0.22 kg/d (P = 0.280) and a daily litter growth rate of 2.90 kg/d (P = 0.547). In conclusion, there was no evidence of an effect of the various leucine, isoleucine, and valine levels evaluated in this study on lactating sow and piglet performance.
Collapse
Affiliation(s)
- Dalton C Humphrey
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | - Laura L Greiner
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
23
|
Muscella A, Felline M, Marsigliante S. Sex-Based Effects of Branched-Chain Amino Acids on Strength Training Performance and Body Composition. Sports (Basel) 2024; 12:275. [PMID: 39453241 PMCID: PMC11510782 DOI: 10.3390/sports12100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) are widely studied for their effects on muscle recovery and performance. AIMS This study examined the effects of BCAA supplementation on anthropometric data, physical performance, delayed onset muscle soreness (DOMS), and fatigue in recreational weightlifters. METHODS The trial involved 100 participants (50 men and 50 women), randomized into BCAA and placebo groups. Subjects in the BCAA group took five daily capsules of 500 mg L-leucine, 250 mg L-isoleucine, and 250 mg L-valine for six months. A two-way ANOVA was used to analyze the main and interaction effects of sex and treatment. RESULTS Notable findings include significant improvements in muscle recovery, as indicated by reduced DOMS, particularly in women who showed a decrement of 18.1 ± 9.4 mm compared to 0.8 ± 1.2 mm in the placebo group of a horizontal 100 mm line. Fatigue perception was also significantly lower in the BCAA group, with women reporting a greater decrease (2.6 ± 1.5 scores) compared to the placebo group (0.6 ± 0.7 scores). Strength gains were prominent, especially in men, with a 10% increase in bench press maximum observed in the BCAA group. The interaction between sex and treatment was significant, suggesting sex-specific responses to BCAA supplementation. CONCLUSIONS These results underscore the effectiveness of BCAA supplementation in enhancing muscle recovery, reducing fatigue, and improving strength. This study also highlights sex-specific responses, with women benefiting more in terms of DOMS and fatigue reduction, while men experienced greater strength gains, suggesting a need for tailored supplementation strategies.
Collapse
Affiliation(s)
- Antonella Muscella
- Department of Biological and Environmental Science and Technologies (DiSTeBA), University of Salento, 73100 Lecce, Italy (S.M.)
| | | | | |
Collapse
|
24
|
Newton-Tanzer E, Can SN, Demmelmair H, Horak J, Holdt L, Koletzko B, Grote V. Apparent Saturation of Branched-Chain Amino Acid Catabolism After High Dietary Milk Protein Intake in Healthy Adults. J Clin Endocrinol Metab 2024:dgae599. [PMID: 39302872 DOI: 10.1210/clinem/dgae599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 09/22/2024]
Abstract
CONTEXT Milk protein contains high concentrations of branched-chain amino acids (BCAA) that play a critical role in anabolism and are implicated in the onset of obesity and chronic disease. Characterizing BCAA catabolism in the postprandial phase could elucidate the impact of protein intake on obesity risk established in the "early protein hypothesis." OBJECTIVE To examine the acute effects of protein content of young child formulas as test meals on BCAA catabolism, observing postprandial plasma concentrations of BCAA in relation to their degradation products. METHODS The TOMI Add-On Study is a randomized, double-blind crossover study in which 27 healthy adults consumed 2 isocaloric young child formulas with alternating higher (HP) and lower (LP) protein and fat content as test meals during separate interventions, while 9 blood samples were obtained over 5 hours. BCAA, branched-chain α-keto acids (BCKA), and acylcarnitines were analyzed using a fully targeted HPLC-ESI-MS/MS approach. RESULTS Mean concentrations of BCAA, BCKA, and acylcarnitines were significantly higher after HP than LP over the 5 postprandial hours, except for the BCKA α-ketoisovalerate (KIVA). The latter metabolite showed higher postprandial concentrations after LP. With increasing mean concentrations of BCAA, concentrations of corresponding BCKA, acylcarnitines, and urea increased until a breakpoint was reached, after which concentrations of degradation products decreased (for all metabolites except valine and KIVA and Carn C4:0-iso). CONCLUSION BCAA catabolism is markedly influenced by protein content of the test meal. We present novel evidence for the apparent saturation of the BCAA degradation pathway in the acute postprandial phase up to 5 hours after consumption.
Collapse
Affiliation(s)
- Emily Newton-Tanzer
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Sultan Nilay Can
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Hans Demmelmair
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Jeannie Horak
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Lesca Holdt
- Institute of Laboratory Medicine, LMU University Hospital, LMU Munich, 80337 Munich, Germany
| | - Berthold Koletzko
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| | - Veit Grote
- Division of Metabolic and Nutritional Medicine, Department Paediatrics, Dr. von Hauner Children's Hospital, LMU University Hospital, LMU Munich, and the German Center for Child and Adolescent Health, site Munich, 80337 Munich, Germany
| |
Collapse
|
25
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. eLife 2024; 12:RP91002. [PMID: 39255192 PMCID: PMC11386957 DOI: 10.7554/elife.91002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues of ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ran-Der Hwang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - YuNing Lu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qing Tang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Goran Periz
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Xiangning Li
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Qiwang Xiang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Tao Zhang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| | - Jiou Wang
- Department of Biochemistry and Molecular Biology, Bloomberg School of Public HealthBaltimoreUnited States
- Department of Neuroscience, School of Medicine, Johns Hopkins UniversityBaltimoreUnited States
| |
Collapse
|
26
|
Mallea AP, Espinosa CD, Lee SA, Cristobal MA, Torrez-Mendoza LJ, Stein HH. Dietary supplementation of valine, isoleucine, and tryptophan may overcome the negative effects of excess leucine in diets for weanling pigs containing corn fermented protein. J Anim Sci Biotechnol 2024; 15:125. [PMID: 39252075 PMCID: PMC11385133 DOI: 10.1186/s40104-024-01082-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/28/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Diets with high inclusion of corn co-products such as corn fermented protein (CFP) may contain excess Leu, which has a negative impact on feed intake and growth performance of pigs due to increased catabolism of Val and Ile and reduced availability of Trp in the brain for serotonin synthesis. However, we hypothesized that the negative effect of using CFP in diets for weanling pigs may be overcome if diets are fortified with crystalline sources of Val, Trp, and (or) Ile. METHODS Three hundred and twenty weanling pigs were randomly allotted to one of 10 dietary treatments in a completely randomized design, with 4 pigs per pen and 8 replicate pens per treatment. A corn-soybean meal diet and 2 basal diets based on corn and 10% CFP or corn and 20% CFP were formulated. Seven additional diets were formulated by fortifying the basal diet with 20% CFP with Ile, Trp, Val, Ile and Val, Ile and Trp, Trp and Val, or Ile, Trp and Val. A two-phase feeding program was used, with d 1 to 14 being phase 1 and d 15 to 28 being phase 2. Fecal scores were recorded every other day. Blood samples were collected on d 14 and 28 from one pig per pen. On d 14, fecal samples were collected from one pig per pen in 3 of the 10 treatments to determine volatile fatty acids, ammonium concentration, and microbial protein. These pigs were also euthanized and ileal tissue was collected. RESULTS There were no effects of dietary treatments on any of the parameters evaluated in phase 1. Inclusion of 10% or 20% CFP in diets reduced (P < 0.05) final body weight on d 28, and average daily gain (ADG) and average daily feed intake (ADFI) in phase 2 and for the entire experimental period. However, pigs fed the CFP diet supplemented with Val, Ile, and Trp had final body weight, ADFI, ADG and gain to feed ratio in phase 2 and for the entire experiment that was not different from pigs fed the control diet. Fecal scores in phase 2 were reduced (P < 0.05) if CFP was used. CONCLUSIONS Corn fermented protein may be included by up to 20% in diets for weanling pigs without affecting growth performance, gut health, or hindgut fermentation, if diets are fortified with extra Val, Trp, and Ile. Inclusion of CFP also improved fecal consistency of pigs.
Collapse
Affiliation(s)
- Andrea P Mallea
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Charmaine D Espinosa
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
- Present Address: EnviroFlight, Raleigh, NC, USA
| | - Su A Lee
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | - Minoy A Cristobal
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA
| | | | - Hans H Stein
- Division of Nutritional Sciences, University of Illinois, Urbana, IL, 61801, USA.
- Department of Animal Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
27
|
Zhang C, Li L, Li W, Fu J, Wu L, Sun L, Yao L. Association between Branched-Chain amino acids and Epilepsy: A Mendelian randomized study. Epilepsy Behav 2024; 158:109916. [PMID: 39002276 DOI: 10.1016/j.yebeh.2024.109916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/13/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) have been affected epilepsy, yet conclusions remain inconclusive, lacking causal evidence regarding whether BCAAs affect epilepsy. Systematic exploration of the causal relationship between BCAAs and epilepsy could hand out new ideas for the treatment of epilepsy. METHODS Utilizing bidirectional Mendelian randomization (MR) study, we investigated the causal relationship between BCAA levels and epilepsy. BCAA levels from genome-wide association studies (GWAS), including total BCAAs, leucine levels, isoleucine levels, and valine levels, were employed. Causal relationships were explored applying the method of inverse variance-weighted (IVW) and MR-Egger, followed by sensitivity analyses of the results to evaluate heterogeneity and pleiotropy. RESULTS Through strict genetic variant selection, we find some related SNPs, total BCAA levels (9), leucine levels (11), isoleucine levels (7), and valine levels (6) as instrumental variables for our MR analysis. Following IVW and sensitivity analysis, total BCAAs levels (OR = 1.14, 95 % CI = 1.019 ∼ 1.285, P = 0.022) and leucine levels (OR = 1.15, 95 % CI = 1.018 ∼ 1.304, P = 0.025) had significant correlation with epilepsy. CONCLUSIONS There exists a causal relationship between the levels of total BCAAs and leucine with epilepsy, offering the new ideas into epilepsy potential mechanisms, holding significant implications for its prevention and treatment.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China; Department of Geratology, Chifeng Municipal Hospital, Chifeng, China
| | - Lu Li
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Wenping Li
- Department of Neurology, Chifeng Municipal Hospital, Chifeng, China
| | - Jia Fu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China; Department of Neurology, Chifeng Municipal Hospital, Chifeng, China
| | - Lei Wu
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China
| | - Linlin Sun
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| | - Lifen Yao
- Department of Neurology, The First Affiliated Hospital, Harbin Medical University, Harbin, China.
| |
Collapse
|
28
|
Wang Y, Liu S, Cao W, Lv J, Yu C, Huang T, Sun D, Liao C, Pang Y, Pang Z, Yu M, Wang H, Wu X, Liu Y, Gao W, Li L. The metabolic signature of blood lipids: a causal inference study using twins. J Lipid Res 2024; 65:100625. [PMID: 39303494 PMCID: PMC11437770 DOI: 10.1016/j.jlr.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/22/2024] Open
Abstract
Dyslipidemia is one of the cardiometabolic risk factors that influences mortality globally. Unraveling the causality between blood lipids and metabolites and the complex networks connecting lipids, metabolites, and other cardiometabolic traits can help to more accurately reflect the body's metabolic disorders and even cardiometabolic diseases. We conducted targeted metabolomics of 248 metabolites in 437 twins from the Chinese National Twin Registry. Inference about Causation through Examination of FAmiliaL CONfounding (ICE FALCON) analysis was used for causal inference between metabolites and lipid parameters. Bidirectional mediation analysis was performed to explore the linkages between blood lipids, metabolites, and other seven cardiometabolic traits. We identified 44, 1, and 31 metabolites associated with triglyceride (TG), total cholesterol (TC), and high-density lipoprotein-cholesterol (HDL-C), most of which were gut microbiota-derived metabolites. There were 9, 1, and 14 metabolites that showed novel associations with TG, TC, and HDL-C, respectively. ICE FALCON analysis found that TG and HDL-C may have a predicted causal effect on 23 and six metabolites, respectively, and one metabolite may have a predicted causal effect on TG. Mediation analysis discovered 14 linkages connecting blood lipids, metabolites, and other cardiometabolic traits. Our study highlights the significance of gut microbiota-derived metabolites in lipid metabolism. Most of the identified cross-sectional associations may be due to the lipids having a predicted causal effect on metabolites, but not vice versa, nor are they due to family confounding. These findings shed new light on lipid metabolism and personalized management of cardiometabolic diseases.
Collapse
Affiliation(s)
- Yutong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Shunkai Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Weihua Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Jun Lv
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Canqing Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Tao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Dianjianyi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Chunxiao Liao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China
| | - Yuanjie Pang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Zengchang Pang
- Qingdao Center for Disease Control and Prevention, Qingdao, China
| | - Min Yu
- Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| | - Hua Wang
- Jiangsu Center for Disease Control and Prevention, Nanjing, China
| | - Xianping Wu
- Sichuan Center for Disease Control and Prevention, Chengdu, China
| | - Yu Liu
- Heilongjiang Center for Disease Control and Prevention, Harbin, China
| | - Wenjing Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China.
| | - Liming Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China; Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing, China.
| |
Collapse
|
29
|
Reifenberg P, Zimmer A. Branched-chain amino acids: physico-chemical properties, industrial synthesis and role in signaling, metabolism and energy production. Amino Acids 2024; 56:51. [PMID: 39198298 PMCID: PMC11358235 DOI: 10.1007/s00726-024-03417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Branched-chain amino acids (BCAAs)-leucine (Leu), isoleucine (Ile), and valine (Val)-are essential nutrients with significant roles in protein synthesis, metabolic regulation, and energy production. This review paper offers a detailed examination of the physico-chemical properties of BCAAs, their industrial synthesis, and their critical functions in various biological processes. The unique isomerism of BCAAs is presented, focusing on analytical challenges in their separation and quantification as well as their solubility characteristics, which are crucial for formulation and purification applications. The industrial synthesis of BCAAs, particularly using bacterial strains like Corynebacterium glutamicum, is explored, alongside methods such as genetic engineering aimed at enhancing production, detailing the enzymatic processes and specific precursors. The dietary uptake, distribution, and catabolism of BCAAs are reviewed as fundamental components of their physiological functions. Ultimately, their multifaceted impact on signaling pathways, immune function, and disease progression is discussed, providing insights into their profound influence on muscle protein synthesis and metabolic health. This comprehensive analysis serves as a resource for understanding both the basic and complex roles of BCAAs in biological systems and their industrial application.
Collapse
Affiliation(s)
- Philipp Reifenberg
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich‑Weiss‑Strasse 4, 64287, Darmstadt, Germany
| | - Aline Zimmer
- Merck Life Science KGaA, Upstream R&D, Frankfurter Strasse 250, 64293, Darmstadt, Germany.
| |
Collapse
|
30
|
Zhen LL, Feng L, Jiang WD, Wu P, Liu Y, Tang L, Li SW, Zhong CB, Zhou XQ. Exploring the novel benefits of leucine: Protecting nitrite-induced liver damage in sub-adult grass carp (Ctenopharyngodon idella) through regulating mitochondria quality control. FISH & SHELLFISH IMMUNOLOGY 2024; 151:109690. [PMID: 38866347 DOI: 10.1016/j.fsi.2024.109690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/14/2024]
Abstract
Leucine is an essential amino acid for fish. The ability of leucine to resist stress in fish has not been reported. Nitrite is a common pollutant in the aquatic environment. Therefore, we investigated the effects of dietary leucine on growth performance and nitrite-induced liver damage, mitochondrial dysfunction, autophagy, and apoptosis for sub-adult grass carp. A total of 450 grass carp (615.91 ± 1.15 g) were selected and randomly placed into 18 net cages. The leucine contents of the six diets were 2.91, 5.90, 8.92, 11.91, 14.93, and 17.92 g/kg, respectively. After a 9-week feeding trial, the nitrite exposure experiment was set up for 96 h. These results indicated that dietary leucine significantly promoted FW, WG, PWG, and SGR of sub-adult grass carp (P < 0.05). Appropriate levels of dietary leucine (11.91-17.92 g/kg) decreased the activities of serum parameters (glucose, cortisol, and methemoglobin contents, glutamic oxaloacetic transaminase, glutamic pyruvic transaminase, and lactate dehydrogenase), the contents of reactive oxygen species (ROS), nitric oxide (NO) and peroxynitrite (ONOO-). In addition, appropriate levels of dietary leucine (11.91-17.92 g/kg) increased the mRNA levels of mitochondrial biogenesis genes (PGC-1α, Nrf1/2, TFAM), fusion-related genes (Opa1, Mfn1/2) (P < 0.05), and decreased the mRNA levels of caspase 3, caspase 8, caspase 9, fission-related gene (Drp1), mitophagy-related genes (Pink1, Parkin) and autophagy-related genes (Beclin1, Ulk1, Atg5, Atg7, Atg12) (P < 0.05). Appropriate levels of dietary leucine (8.92-17.92 g/kg) also increased the protein levels of AMP-activated protein kinase (AMPK), prostacyclin (p62) and decreased the protein levels of protein light chain 3 (LC3), E3 ubiquitin ligase (Parkin), and Cytochrome c (Cytc). Appropriate levels of leucine (8.92-17.92 g/kg) could promote growth performance and alleviate nitrite-induced mitochondrial dysfunction, autophagy, apoptosis for sub-adult grass carp. Based on quadratic regression analysis of PWG and serum GPT activity, dietary leucine requirements of sub-adult grass carp were recommended to be 12.47 g/kg diet and 12.55 g/kg diet, respectively.
Collapse
Affiliation(s)
- Lu-Lu Zhen
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Shu-Wei Li
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Cheng-Bo Zhong
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Sichuan Animtech Feed Co. Ltd, Chengdu, 610066, Sichuan, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu, 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China; Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Ministry of Agriculture and Rural Affairs, Key Laboratory of Sichuan Province, Sichuan, 611130, China.
| |
Collapse
|
31
|
Oliveira CHD, Dias KMM, Schultz ÉB, Borges SO, Gomes KM, Rodrigues CDJ, Almeida BFD, Calderano AA. BCAA interactions: how do they influence broiler performance, intestinal morphometry, lipid profile, and liver health? Arch Anim Nutr 2024; 78:398-413. [PMID: 39823356 DOI: 10.1080/1745039x.2024.2438420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/29/2024] [Indexed: 01/19/2025]
Abstract
An experiment was conducted to assess the effects of the BCAA and their interactions on performance, carcass composition, lipid metabolism, liver health, and intestinal morphometry in broiler chickens. Male chickens (n = 1080) were randomly assigned into floor pens in a 3 × 3 factorial design with 3 dietary ratios of SID Leu:Lys (110, 150, and 190%), and 3 dietary ratios of SID Ile-Val:Lys (68-77, 78-87, and 88-97%). Performance parameters were assessed from 1 to 35 days of age. Additionally, blood parameters, carcass composition through DEXA analysis, and intestinal morphometry of the small intestine were evaluated in birds at 35 days of age. Data were subjected to ANOVA and the Tukey Test was used to determine differences between treatments (p ≤ 0.05). Feed intake, feed conversion ratio, and body fat of birds were reduced when SID Ile-Val:Lys increased from 68-77 to 88-97% (p < 0.05). Serum glucose, total cholesterol, and triglycerides were influenced by BCAA interactions (p < 0.05). Alkaline phosphatase and gamma-glutamyl transferase levels were reduced when SID Leu:Lys ratio increased from 110 to 190% (p < 0.05). However, the alanine aminotransferase levels increased when both SID Leu:Lys and SID Ile-Val:Lys increased from 110 to 190%, and 68-77 to 88-97%, respectively (p < 0.05). The highest SID Leu:Lys ratio of 190% resulted in the highest villus height-to-crypt depth ratio in all three portions of the intestine, whereas the highest SID Ile-Val:Lys ratio of 88-97% resulted in the highest ratio only in the jejunum and ileum (p < 0.05). In conclusion, the results of this study provide valuable insights into the inclusion of BCAA in broiler diets and their effects on performance, body fat content, intestinal morphometry, lipid metabolism, and liver health.
Collapse
|
32
|
Shin J, Ko D, Hasanthi M, Eom G, Lee K. Dietary Valine Requirement of Juvenile Olive Flounder ( Paralichthys olivaceus). AQUACULTURE NUTRITION 2024; 2024:3643845. [PMID: 39555560 PMCID: PMC11300065 DOI: 10.1155/2024/3643845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 06/10/2024] [Accepted: 06/21/2024] [Indexed: 11/19/2024]
Abstract
This study was conducted to estimate dietary valine (Val) requirement for juvenile olive flounder (Paralichthys olivaceus). In a feeding trial, a total of 540 fish (initial body weight: 23.0 ± 0.2 g) were stocked into 18 tanks (210 L). Six experimental diets containing graded levels of Val (4, 8, 12, 16, 20, and 24 g/kg, dry matter basis) were fed to the fish in triplicate groups for 13 weeks. The lowest growth, feed utilization, and survival were observed in 4 g/kg Val group (P < 0.05). Dietary Val deficiency resulted in significant decreases (P < 0.05) in whole-body protein and Val concentrations, hepatosomatic index, condition factor and plasma protein and cholesterol levels. Nonspecific immunity and antioxidant activities were significantly lower (P < 0.05) in 4 g/kg Val group than in other groups. Dietary Val deficiency upregulated the expression of proinflammatory cytokines and downregulated the expression of anti-inflammatory cytokines and intestinal tight junction protein (occludin) (P < 0.05). Mucosal fold height and submucosa and muscularis thickness of fish intestine were significantly lower (P < 0.05) in fish fed 4 g/kg Val diet. Relatively lower lipid droplet in hepatic cell was observed in 4 g/kg Val group. Our findings suggested that dietary Val requirements for juvenile olive flounder would be 17.7-18.9 g Val/kg (35.4-37.8 g/kg on the basis of crude protein), estimated by quadratic regression analysis based on the weight gain, protein efficiency ratio, and protein retention efficiency.
Collapse
Affiliation(s)
- Jaehyeong Shin
- Department of Marine Life SciencesJeju National University, Jeju 63243, Republic of Korea
| | - Deahyun Ko
- Department of Marine Life SciencesJeju National University, Jeju 63243, Republic of Korea
| | - Mirasha Hasanthi
- Department of Marine Life SciencesJeju National University, Jeju 63243, Republic of Korea
| | - Gunho Eom
- Department of Marine Life SciencesJeju National University, Jeju 63243, Republic of Korea
| | - Kyeong–Jun Lee
- Department of Marine Life SciencesJeju National University, Jeju 63243, Republic of Korea
- Marine Life Research InstituteKidang Marine Science InstituteJeju National University, Jeju 63333, Republic of Korea
| |
Collapse
|
33
|
Wu C, Acuña A, Florez-Palacios L, Harrison D, Rogers D, Mozzoni L, Mian R, Canella Vieira C. Across-environment seed protein stability and genetic architecture of seed components in soybean. Sci Rep 2024; 14:16452. [PMID: 39013958 PMCID: PMC11252131 DOI: 10.1038/s41598-024-67035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
The recent surge in the plant-based protein market has resulted in high demands for soybean genotypes with improved grain yield, seed protein and oil content, and essential amino acids (EAAs). Given the quantitative nature of these traits, complex interactions among seed components, as well as between seed components and environmental factors and management practices, add complexity to the development of desired genotypes. In this study, the across-environment seed protein stability of 449 genetically diverse plant introductions was assessed, revealing that genotypes may display varying sensitivities to such environmental stimuli. The EAAs valine, phenylalanine, and threonine showed the highest variable importance toward the variation in stability, while both seed protein and oil contents were among the explanatory variables with the lowest importance. In addition, 56 single nucleotide polymorphism (SNP) markers were significantly associated with various seed components. Despite the strong phenotypic Pearson's correlation observed among most seed components, many independent genomic regions associated with one or few seed components were identified. These findings provide insights for improving the seed concentration of specific EAAs and reducing the negative correlation between seed protein and oil contents.
Collapse
Affiliation(s)
- Chengjun Wu
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Andrea Acuña
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Liliana Florez-Palacios
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Derrick Harrison
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Daniel Rogers
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Leandro Mozzoni
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - Rouf Mian
- Soybean and Nitrogen Fixation Research Unit, USDA-Agricultural Research Service, Raleigh, NC, 27607, USA
| | - Caio Canella Vieira
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
34
|
Li G, Li Z, Liu J. Amino acids regulating skeletal muscle metabolism: mechanisms of action, physical training dosage recommendations and adverse effects. Nutr Metab (Lond) 2024; 21:41. [PMID: 38956658 PMCID: PMC11220999 DOI: 10.1186/s12986-024-00820-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/24/2024] [Indexed: 07/04/2024] Open
Abstract
Maintaining skeletal muscle mass is important for improving muscle strength and function. Hence, maximizing lean body mass (LBM) is the primary goal for both elite athletes and fitness enthusiasts. The use of amino acids as dietary supplements is widespread among athletes and physically active individuals. Extensive literature analysis reveals that branched-chain amino acids (BCAA), creatine, glutamine and β-alanine may be beneficial in regulating skeletal muscle metabolism, enhancing LBM and mitigating exercise-induced muscle damage. This review details the mechanisms of these amino acids, offering insights into their efficacy as supplements. Recommended dosage and potential side effects are then outlined to aid athletes in making informed choices and safeguard their health. Lastly, limitations within the current literature are addressed, highlighting opportunities for future research.
Collapse
Affiliation(s)
- Guangqi Li
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China
| | - Zhaojun Li
- Gaomi Municipal Center for Disease Control and Prevention, Gaomi city, Shandong, People's Republic of China
| | - Junyi Liu
- School of Physical Education, Northeast Normal university, No. 5268, Renmin Street, Changchun city, Jilin province, 130024, People's Republic of China.
| |
Collapse
|
35
|
Abdualkader AM, Karwi QG, Lopaschuk GD, Al Batran R. The role of branched-chain amino acids and their downstream metabolites in mediating insulin resistance. JOURNAL OF PHARMACY & PHARMACEUTICAL SCIENCES : A PUBLICATION OF THE CANADIAN SOCIETY FOR PHARMACEUTICAL SCIENCES, SOCIETE CANADIENNE DES SCIENCES PHARMACEUTIQUES 2024; 27:13040. [PMID: 39007094 PMCID: PMC11239365 DOI: 10.3389/jpps.2024.13040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/19/2024] [Indexed: 07/16/2024]
Abstract
Elevated levels of circulating branched-chain amino acids (BCAAs) and their associated metabolites have been strongly linked to insulin resistance and type 2 diabetes. Despite extensive research, the precise mechanisms linking increased BCAA levels with these conditions remain elusive. In this review, we highlight the key organs involved in maintaining BCAA homeostasis and discuss how obesity and insulin resistance disrupt the intricate interplay among these organs, thus affecting BCAA balance. Additionally, we outline recent research shedding light on the impact of tissue-specific or systemic modulation of BCAA metabolism on circulating BCAA levels, their metabolites, and insulin sensitivity, while also identifying specific knowledge gaps and areas requiring further investigation. Finally, we summarize the effects of BCAA supplementation or restriction on obesity and insulin sensitivity.
Collapse
Affiliation(s)
- Abdualrahman Mohammed Abdualkader
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| | - Qutuba G. Karwi
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Gary D. Lopaschuk
- Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Rami Al Batran
- Faculty of Pharmacy, Université de Montréal, Montréal, QC, Canada
- Montreal Diabetes Research Center, Montréal, QC, Canada
- Cardiometabolic Health, Diabetes and Obesity Research Network, Montréal, QC, Canada
| |
Collapse
|
36
|
Conte E, Mantuano P, Boccanegra B, Imbrici P, Dinoi G, Lenti R, Cappellari O, Cappetta D, De Angelis A, Berrino L, Gordish-Dressman H, Bianchini G, Aramini A, Allegretti M, Liantonio A, De Luca A. Branched-chain amino acids and L-alanine supplementation ameliorate calcium dyshomeostasis in sarcopenia: New insights for nutritional interventions. Front Pharmacol 2024; 15:1393746. [PMID: 38962308 PMCID: PMC11220240 DOI: 10.3389/fphar.2024.1393746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.
Collapse
Affiliation(s)
- Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giorgia Dinoi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | | | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
37
|
Gutiérrez-Rey M, Castellar-Visbal L, Acevedo-Vergara K, Vargas-Manotas J, Rivera-Porras D, Londoño-Juliao G, Castillo-Guerrero B, Perdomo-Jiménez MC, Bermúdez V. The Weight of Bariatric Surgery: Wernicke-Korsakoff Syndrome after Vertical Sleeve Gastrectomy-A Case Series. J Pers Med 2024; 14:638. [PMID: 38929859 PMCID: PMC11204981 DOI: 10.3390/jpm14060638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
In this case series, the simultaneous occurrence of Wernicke's encephalopathy (WE) and dry beriberi was reported in three patients who underwent vertical sleeve gastrectomy (VSG) between May 2021 and May 2023. All patients were obese women who underwent vertical sleeve gastrectomy (VSG) without immediate postoperative complications, but two weeks later, hyperemesis and subsequent encephalopathy with ocular movement abnormalities and weakness were observed over the following thirty days. Patients were referred to neurology, where due to the high suspicion of WE, thiamine replacement therapy was initiated; meanwhile, diagnostic neuroimaging and blood tests were conducted. Neurological and psychiatric evaluations and neuroconduction studies were performed to assess the clinical evolution and present sequelae. One year after diagnosis, all patients exhibited affective and behavioral sequelae, anterograde memory impairment, and executive functioning deficits. Two patients met the criteria for Korsakoff syndrome. Additionally, peripheral nervous system sequelae were observed, with all patients presenting with sensorimotor polyneuropathy. In conclusion, Wernicke's encephalopathy requires a high diagnostic suspicion for timely intervention and prevention of irreversible sequelae, which can be devastating. Therefore, raising awareness among medical professionals regarding the significance of this disease is essential.
Collapse
Affiliation(s)
- Melissa Gutiérrez-Rey
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | - Lily Castellar-Visbal
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | | | - José Vargas-Manotas
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | - Diego Rivera-Porras
- Universidad Simón Bolívar, Facultad de Ciencias Jurídicas y Sociales, Centro de Investigación en Estudios Fronterizos, Cúcuta 540001, Colombia;
| | - Gloria Londoño-Juliao
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | - Brenda Castillo-Guerrero
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | - María-Camila Perdomo-Jiménez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| | - Valmore Bermúdez
- Universidad Simón Bolívar, Facultad de Ciencias de la Salud, Barranquilla 080001, Colombia; (M.G.-R.); (L.C.-V.); (J.V.-M.); (G.L.-J.); (B.C.-G.); (M.-C.P.-J.)
| |
Collapse
|
38
|
Zhang Y, Zhan L, Zhang L, Shi Q, Li L. Branched-Chain Amino Acids in Liver Diseases: Complexity and Controversy. Nutrients 2024; 16:1875. [PMID: 38931228 PMCID: PMC11206364 DOI: 10.3390/nu16121875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Branched-chain amino acids (BCAAs), as essential amino acids, engage in various physiological processes, such as protein synthesis, energy supply, and cellular signaling. The liver is a crucial site for BCAA metabolism, linking the changes in BCAA homeostasis with the pathogenesis of a variety of liver diseases and their complications. Peripheral circulating BCAA levels show complex trends in different liver diseases. This review delineates the alterations of BCAAs in conditions including non-alcoholic fatty liver disease, hepatocellular carcinoma, cirrhosis, hepatic encephalopathy, hepatitis C virus infection, and acute liver failure, as well as the potential mechanisms underlying these changes. A significant amount of clinical research has utilized BCAA supplements in the treatment of patients with cirrhosis and liver cancer. However, the efficacy of BCAA supplementation in clinical practice remains uncertain and controversial due to the heterogeneity of studies. This review delves into the complicated relationship between BCAAs and liver diseases and tries to untangle what role BCAAs play in the occurrence, development, and outcomes of liver diseases.
Collapse
Affiliation(s)
- Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Luqi Zhan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lingjian Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
- Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310024, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou 310003, China
| |
Collapse
|
39
|
Hwang RD, Lu Y, Tang Q, Periz G, Park G, Li X, Xiang Q, Liu Y, Zhang T, Wang J. DBT is a metabolic switch for maintenance of proteostasis under proteasomal impairment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.12.556394. [PMID: 37745492 PMCID: PMC10515868 DOI: 10.1101/2023.09.12.556394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Proteotoxic stress impairs cellular homeostasis and underlies the pathogenesis of many neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). The proteasomal and autophagic degradation of proteins are two major pathways for protein quality control in the cell. Here, we report a genome-wide CRISPR screen uncovering a major regulator of cytotoxicity resulting from the inhibition of the proteasome. Dihydrolipoamide branched chain transacylase E2 (DBT) was found to be a robust suppressor, the loss of which protects against proteasome inhibition-associated cell death through promoting clearance of ubiquitinated proteins. Loss of DBT altered the metabolic and energetic status of the cell and resulted in activation of autophagy in an AMP-activated protein kinase (AMPK)-dependent mechanism in the presence of proteasomal inhibition. Loss of DBT protected against proteotoxicity induced by ALS-linked mutant TDP-43 in Drosophila and mammalian neurons. DBT is upregulated in the tissues from ALS patients. These results demonstrate that DBT is a master switch in the metabolic control of protein quality control with implications in neurodegenerative diseases.
Collapse
|
40
|
Brown LD, Stremming J, Robinson DT. Targeting optimal protein delivery in parenteral and enteral nutrition for preterm infants: a review of randomized, controlled trials. J Perinatol 2024; 44:603-611. [PMID: 38123801 DOI: 10.1038/s41372-023-01847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/24/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Close attention to nutritional management is essential for optimizing growth and neurodevelopment of the preterm infant. Protein intake and the protein to energy ratio are the main determinants of growth and body composition. Yet large, multi-center, randomized controlled trials are lacking to guide protein delivery for the preterm infant. Until these studies are pursued, smaller trials must be used to inform clinical practice. This review summarizes the randomized controlled trials that have been performed to test the impact of higher vs. lower protein delivery to the preterm infant. We consider the trials that varied protein delivery rates during parenteral and enteral phases of nutrition. Considerable heterogeneity exists across study designs. Still, cumulative evidence from these trials provides a framework for current recommendations for protein intake in the preterm infant.
Collapse
Affiliation(s)
- Laura D Brown
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Jane Stremming
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel T Robinson
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
41
|
Ajao AM, Olukosi OA. Apparent ileal amino acid digestibility, gut morphometrics, and gene expression of peptide and amino acid transporters in broiler chickens fed low-crude-protein diets supplemented with crystalline amino acids with soybean meal, canola meal, or corn DDGS as protein feedstuffs. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4189-4200. [PMID: 38349054 DOI: 10.1002/jsfa.13300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/27/2023] [Accepted: 01/10/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND We investigated the impact of using canola meal (CM) or corn distillers dried grain soluble (cDDGS) in place of soybean meal (SBM) in low-crude-protein diets supplemented with amino acids (AA) on AA digestibility, gut morphometrics, and AA transporter genes in broiler chicken. On day 0, 540 Cobb 500 male broilers were allocated to six diets in 36-floor pens. The positive control (PC) was a corn-SBM diet with adequate crude protein (CP). The CP level of negative control (NC) was decreased by 45 and 40 g kg-1 relative to PC for grower and finisher phases, respectively. The subsequent two diets had the same CP levels as NC but with cDDGS added at 50 or 125 g kg-1. The last two diets had the same CP as NC but with CM added at 50 or 100 g kg-1. RESULTS Dietary CP reduction in corn-SBM diets increased (P < 0.05) the digestibility of Lys (88.5%), Met (90.7%), Thr (77.4%), Cys (80.7%), and Gly (84.7%). Increasing levels of cDDGS linearly decreased (P < 0.05) the digestibility of Asp, Cys, Glu, and Ser, whereas increasing CM level linearly decreased (P < 0.05) the digestibility of Cys, Pro, and Ser. The CP reduction in corn-SBM diets produced downward expression of peptide transporter1 and decreased (P < 0.05) absolute pancreas and ileum weight and length of jejunum and ileum. CONCLUSIONS Partial replacement of SBM with alternative protein feedstuffs (cDDGS or CM) in low-CP diets had minimal effects on AA digestibility and mRNA levels of peptides and AA transporters. © 2024 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Adeleye M Ajao
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
42
|
dos Santos Ferreira MC, Pendleton A, Yeo W, Málaga Gadea FC, Camelo D, McGuire M, Brinsmade SR. In Staphylococcus aureus, the acyl-CoA synthetase MbcS supports branched-chain fatty acid synthesis from carboxylic acid and aldehyde precursors. Mol Microbiol 2024; 121:865-881. [PMID: 38366323 PMCID: PMC11167679 DOI: 10.1111/mmi.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
In the human pathogen Staphylococcus aureus, branched-chain fatty acids (BCFAs) are the most abundant fatty acids in membrane phospholipids. Strains deficient for BCFAs synthesis experience auxotrophy in laboratory culture and attenuated virulence during infection. Furthermore, the membrane of S. aureus is among the main targets for antibiotic therapy. Therefore, determining the mechanisms involved in BCFAs synthesis is critical to manage S. aureus infections. Here, we report that the overexpression of SAUSA300_2542 (annotated to encode an acyl-CoA synthetase) restores BCFAs synthesis in strains lacking the canonical biosynthetic pathway catalyzed by the branched-chain α-keto acid dehydrogenase (BKDH) complex. We demonstrate that the acyl-CoA synthetase activity of MbcS activates branched-chain carboxylic acids (BCCAs), and is required by S. aureus to utilize the isoleucine derivative 2-methylbutyraldehyde to restore BCFAs synthesis in S. aureus. Based on the ability of some staphylococci to convert branched-chain aldehydes into their respective BCCAs and our findings demonstrating that branched-chain aldehydes are in fact BCFAs precursors, we propose that MbcS promotes the scavenging of exogenous BCCAs and mediates BCFA synthesis via a de novo alternative pathway.
Collapse
Affiliation(s)
| | - Augustus Pendleton
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
- Present address:
Department of MicrobiologyCornell UniversityIthacaNew YorkUSA
| | - Won‐Sik Yeo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | | | - Danna Camelo
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Maeve McGuire
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Shaun R. Brinsmade
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
43
|
Lu X, Yang R, Chen Y, Chen D. NAD metabolic therapy in metabolic dysfunction-associated steatotic liver disease: Possible roles of gut microbiota. iScience 2024; 27:109174. [PMID: 38405608 PMCID: PMC10884928 DOI: 10.1016/j.isci.2024.109174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly named non-alcoholic fatty liver disease (NAFLD), is induced by alterations of hepatic metabolism. As a critical metabolites function regulator, nicotinamide adenine dinucleotide (NAD) nowadays has been validated to be effective in the treatment of diet-induced murine model of MASLD. Additionally, gut microbiota has been reported to have the potential to prevent MASLD by dietary NAD precursors metabolizing together with mammals. However, the underlying mechanism remains unclear. In this review, we hypothesized that NAD enhancing mitochondrial activity might reshape a specific microbiota signature, and improve MASLD progression demonstrated by fecal microbiota transplantation. Here, this review especially focused on the mechanism of Microbiota-Gut-Liver Axis together with NAD metabolism for the MASLD progress. Notably, we found significant changes in Prevotella associated with NAD in a gut microbiome signature of certain MASLD patients. With the recent researches, we also inferred that Prevotella can not only regulate the level of NAD pool by boosting the carbon metabolism, but also play a vital part in regulating the branched-chain amino acid (BCAA)-related fatty acid metabolism pathway. Altogether, our results support the notion that the gut microbiota contribute to the dietary NAD precursors metabolism in MASLD development and the dietary NAD precursors together with certain gut microbiota may be a preventive or therapeutic strategy in MASLD management.
Collapse
Affiliation(s)
- Xinyi Lu
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Rui Yang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Yu Chen
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
| | - Daozhen Chen
- Wuxi Medical Center, Nanjing Medical University, Jiangsu 211166, China
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Jiangsu 214002, China
- Department of Laboratory, Haidong Second People’s Hospital, Haidong 810699, China
| |
Collapse
|
44
|
Anfinsen ÅM, Johannesen CO, Myklebust VH, Rosendahl-Riise H, McCann A, Nygård OK, Dierkes J, Lysne V. Time-resolved concentrations of serum amino acids, one-carbon metabolites and B-vitamin biomarkers during the postprandial and fasting state: the Postprandial Metabolism in Healthy Young Adults (PoMet) Study. Br J Nutr 2024; 131:786-800. [PMID: 37886826 PMCID: PMC10864995 DOI: 10.1017/s0007114523002490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/30/2023] [Accepted: 10/24/2023] [Indexed: 10/28/2023]
Abstract
Metabolomics has been utilised in epidemiological studies to investigate biomarkers of nutritional status and metabolism in relation to non-communicable diseases. However, little is known about the effect of prandial status on several biomarker concentrations. Therefore, the aim of this intervention study was to investigate the effect of a standardised breakfast meal followed by food abstinence for 24 h on serum concentrations of amino acids, one-carbon metabolites and B-vitamin biomarkers. Thirty-four healthy subjects (eighteen males and sixteen females) aged 20-30 years were served a breakfast meal (∼500 kcal) after which they consumed only water for 24 h. Blood samples were drawn before and at thirteen standardised timepoints after the meal. Circulating concentrations of most amino acids and metabolites linked to one-carbon metabolism peaked within the first 3 h after the meal. The branched-chain amino acids steadily increased from 6 or 8 hours after the meal, while proline decreased in the same period. Homocysteine and cysteine concentrations immediately decreased after the meal but steadily increased from 3 and 4 hours until 24 h. FMN and riboflavin fluctuated immediately after the meal but increased from 6 h, while folate increased immediately after the meal and remained elevated during the 24 h. Our findings indicate that accurate reporting of time since last meal is crucial when investigating concentrations of certain amino acids and one-carbon metabolites. Our results suggest a need for caution when interpretating studies, which utilise such biomarkers, but do not strictly control for time since the last meal.
Collapse
Affiliation(s)
- Åslaug Matre Anfinsen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Christina Osland Johannesen
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Vilde Haugen Myklebust
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Hanne Rosendahl-Riise
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Ottar Kjell Nygård
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Mohn Nutrition Research Laboratory, Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
45
|
Zhu T, Jin M, Peng H, Zhao W, Shen Y, Xie S, Zhou Q. Cholesterol Modifies Nutritional Values and Flavor Qualities in Female Swimming Crab ( Portunus trituberculatus). AQUACULTURE NUTRITION 2024; 2024:7067588. [PMID: 39555531 PMCID: PMC11324362 DOI: 10.1155/2024/7067588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/06/2024] [Accepted: 02/10/2024] [Indexed: 11/19/2024]
Abstract
The quality of crustacean aquatic products is affected by feed. Cholesterol (CHO), an essential element for crustacean growth, has been widely supplemented in diet, but its food quality regulation remains unclear. The study aimed to investigate the effects of different dietary CHO levels (0.12%, 1.00%, and 2.50%) on the nutritional value and flavor quality in the edible parts of female swimming crabs (Portunus trituberculatus). Results showed that dietary CHO levels significantly increased lipid content in the hepatopancreas and promoted the accumulation of n-3 long-chain polyunsaturated fatty acids (LC-PUFA) in the hepatopancreas and muscle by activating the gene expression related to biosynthesis pathways. However, with dietary CHO levels increased, protein content in muscle decreased significantly. This may be related to dietary CHO supplementation (especially 2.50% CHO level) suppressed amino acid accumulation in the hepatopancreas and muscle by downregulating the target of the rapamycin pathway and upregulating amino acid catabolism-related genes. Moreover, 1.00% CHO treatment had higher relative levels of volatiles, producing grassy, fruity, and fatty odors in muscle, which may be due to the upregulation of the branched-chain amino acid transaminase (bcat) expression level. Dietary CHO weakened nucleotide and free amino acid accumulation in hepatopancreas and muscle. Overall, this study suggests that dietary 1.00% CHO level had higher LC-PUFA and pleasing flavor substances in muscle but was not conducive to hepatopancreatic protein and flavor nucleotide deposition of swimming crab.
Collapse
Affiliation(s)
- Tingting Zhu
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Min Jin
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Hongyu Peng
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Wenli Zhao
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Yuedong Shen
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Shichao Xie
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| | - Qicun Zhou
- Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China
- Key Laboratory of Aquaculture Biotechnology Ministry of Education, Ningbo University, Ningbo 315211, China
- Key Laboratory of Green Mariculture (Co-construction by Ministry and Province), Ministry of Agriculture and Rural, Ningbo 315211, China
| |
Collapse
|
46
|
Orlowska MK, Krycer JR, Reid JD, Mills RJ, Doran MR, Hudson JE. A miniaturized culture platform for control of the metabolic environment. BIOMICROFLUIDICS 2024; 18:024101. [PMID: 38434908 PMCID: PMC10908563 DOI: 10.1063/5.0169143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The heart is a metabolic "omnivore" and adjusts its energy source depending on the circulating metabolites. Human cardiac organoids, a three-dimensional in vitro model of the heart wall, are a useful tool to study cardiac physiology and pathology. However, cardiac tissue naturally experiences shear stress and nutrient fluctuations via blood flow in vivo, whilst in vitro models are conventionally cultivated in a static medium. This necessitates the regular refreshing of culture media, which creates acute cellular disturbances and large metabolic fluxes. To culture human cardiac organoids in a more physiological manner, we have developed a perfused bioreactor for cultures in a 96-well plate format. The designed bioreactor is easy to fabricate using a common culture plate and a 3D printer. Its open system allows for the use of traditional molecular biology techniques, prevents flow blockage issues, and provides easy access for sampling and cell assays. We hypothesized that a perfused culture would create more stable environment improving cardiac function and maturation. We found that lactate is rapidly produced by human cardiac organoids, resulting in large fluctuations in this metabolite under static culture. Despite this, neither medium perfusion in bioreactor culture nor lactate supplementation improved cardiac function or maturation. In fact, RNA sequencing revealed little change across the transcriptome. This demonstrates that cardiac organoids are robust in response to fluctuating environmental conditions under normal physiological conditions. Together, we provide a framework for establishing an easily accessible perfusion system that can be adapted to a range of miniaturized cell culture systems.
Collapse
|
47
|
Affourtit C, Carré JE. Mitochondrial involvement in sarcopenia. Acta Physiol (Oxf) 2024; 240:e14107. [PMID: 38304924 DOI: 10.1111/apha.14107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/03/2024]
Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as accelerated loss of skeletal muscle mass and function contributes to both age- and disease-related frailty. Physical activity remains the only proven therapy for sarcopenia to date, but alternatives are much sought after to manage this progressive muscle disorder in individuals who are unable to exercise. Mitochondria have been widely implicated in the etiology of sarcopenia and are increasingly suggested as attractive therapeutic targets to help restore the perturbed balance between protein synthesis and breakdown that underpins skeletal muscle atrophy. Reviewing current literature, we note that mitochondrial bioenergetic changes in sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle cells incapable of making sufficient ATP to fuel protein synthesis. Based on the reported mitochondrial effects of therapeutic interventions, however, we argue that the observed bioenergetic changes may instead reflect an adaptation to pathologically decreased energy expenditure in sarcopenic muscle. Discrimination between these mechanistic possibilities will be crucial for improving the management of sarcopenia.
Collapse
Affiliation(s)
| | - Jane E Carré
- School of Biomedical Sciences, University of Plymouth, Plymouth, UK
| |
Collapse
|
48
|
Takegahara N, Kim H, Choi Y. Unraveling the intricacies of osteoclast differentiation and maturation: insight into novel therapeutic strategies for bone-destructive diseases. Exp Mol Med 2024; 56:264-272. [PMID: 38297158 PMCID: PMC10907717 DOI: 10.1038/s12276-024-01157-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024] Open
Abstract
Osteoclasts are the principal cells that efficiently resorb bone. Numerous studies have attempted to reveal the molecular pathways leading to the differentiation and activation of osteoclasts to improve the treatment and prevention of osteoporosis and other bone-destructive diseases. While the cumulative knowledge of osteoclast regulatory molecules, such as receptor activator of nuclear factor-kB ligand (RANKL) and nuclear factor of activated T cells 1 (NFATc1), contributes to the understanding of the developmental progression of osteoclasts, little is known about how the discrete steps of osteoclastogenesis modify osteoclast status but not the absolute number of osteoclasts. The regulatory mechanisms involved in osteoclast maturation but not those involved in differentiation deserve special attention due to their potential use in establishing a more effective treatment strategy: targeting late-phase differentiation while preserving coupled bone formation. Recent studies have shed light on the molecules that govern late-phase osteoclast differentiation and maturation, as well as the metabolic changes needed to adapt to shifting metabolic demands. This review outlines the current understanding of the regulation of osteoclast differentiation, as well as osteoclast metabolic adaptation as a differentiation control mechanism. Additionally, this review introduces molecules that regulate the late-phase osteoclast differentiation and thus minimally impact coupled bone formation.
Collapse
Affiliation(s)
- Noriko Takegahara
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hyunsoo Kim
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Yongwon Choi
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
49
|
Wang MM, Huang YY, Liu WB, Xiao K, Wang X, Guo HX, Zhang YL, Fan JW, Li XF, Jiang GZ. Interactive effects of dietary leucine and isoleucine affect amino acid profile and metabolism through AKT/TOR signaling pathways in blunt snout bream (Megalobrama amblycephala). FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:385-401. [PMID: 36525145 DOI: 10.1007/s10695-022-01161-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
The purpose of this research is to explore the interaction between dietary leucine and isoleucine levels on whole-body composition, plasma and liver biochemical indexes, amino acids deposition in the liver, and amino acid metabolism of blunt snout bream (Megalobrama amblycephala). The test fish (average weight: 56.00 ± 0.55 g) were fed one of six diets at random containing two leucine levels (1.70% and 2.50%) and three isoleucine levels (1.00%, 1.20%, and 1.40%) for 8 weeks. The results showed that the final weight and weight gain rate were the highest in the fish fed low-level leucine and high-level isoleucine diets (P > 0.05). Furthermore, the crude lipid content was significantly adjusted by diets with diverse levels of leucine and isoleucine (P < 0.05). In addition, interactive effects of these two branched-chain amino acids (BCAAs) were found on plasma total protein, blood ammonia, and blood urea nitrogen of test fish (P < 0.05). Additionally, the liver amino acid profiles were significantly influenced by the interactive effects of the two BCAAs (P < 0.05). Moreover, interactive effects of dietary leucine and isoleucine were significantly observed in the expressions of amino acid metabolism-related genes (P < 0.05). These findings suggested that dietary leucine and isoleucine had interaction. Meanwhile, the interaction between them was more conducive to the growth and quality improvement of blunt snout bream when the dietary leucine level was 1.70% and isoleucine level was 1.40%.
Collapse
Affiliation(s)
- Mang-Mang Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yang-Yang Huang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Wen-Bin Liu
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Kang Xiao
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xi Wang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Hui-Xing Guo
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Yi-Lin Zhang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Jing-Wei Fan
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Xiang-Fei Li
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China
| | - Guang-Zhen Jiang
- Key Laboratory of Aquatic Nutrition and Feed Science of Jiangsu Province, College of Animal Science and Technology, Nanjing Agricultural University, No.1 Weigang Road, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
50
|
Szabo E, Nagy B, Czajlik A, Komlodi T, Ozohanics O, Tretter L, Ambrus A. Mitochondrial Alpha-Keto Acid Dehydrogenase Complexes: Recent Developments on Structure and Function in Health and Disease. Subcell Biochem 2024; 104:295-381. [PMID: 38963492 DOI: 10.1007/978-3-031-58843-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The present work delves into the enigmatic world of mitochondrial alpha-keto acid dehydrogenase complexes discussing their metabolic significance, enzymatic operation, moonlighting activities, and pathological relevance with links to underlying structural features. This ubiquitous family of related but diverse multienzyme complexes is involved in carbohydrate metabolism (pyruvate dehydrogenase complex), the citric acid cycle (α-ketoglutarate dehydrogenase complex), and amino acid catabolism (branched-chain α-keto acid dehydrogenase complex, α-ketoadipate dehydrogenase complex); the complexes all function at strategic points and also participate in regulation in these metabolic pathways. These systems are among the largest multienzyme complexes with at times more than 100 protein chains and weights ranging up to ~10 million Daltons. Our chapter offers a wealth of up-to-date information on these multienzyme complexes for a comprehensive understanding of their significance in health and disease.
Collapse
Affiliation(s)
- Eszter Szabo
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Balint Nagy
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Andras Czajlik
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Timea Komlodi
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Oliver Ozohanics
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Attila Ambrus
- Department of Biochemistry, Semmelweis University, Budapest, Hungary.
| |
Collapse
|