1
|
Reyes-Soto CY, Ramírez-Carreto RJ, Ortíz-Alegría LB, Silva-Palacios A, Zazueta C, Galván-Arzate S, Karasu Ç, Túnez I, Tinkov AA, Aschner M, López-Goerne T, Chavarría A, Santamaría A. S-allyl-cysteine triggers cytotoxic events in rat glioblastoma RG2 and C6 cells and improves the effect of temozolomide through the regulation of oxidative responses. Discov Oncol 2024; 15:272. [PMID: 38977545 PMCID: PMC11231126 DOI: 10.1007/s12672-024-01145-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/03/2024] [Indexed: 07/10/2024] Open
Abstract
Glioblastoma (GBM) is an aggressive form of cancer affecting the Central Nervous System (CNS) of thousands of people every year. Redox alterations have been shown to play a key role in the development and progression of these tumors as Reactive Oxygen Species (ROS) formation is involved in the modulation of several signaling pathways, transcription factors, and cytokine formation. The second-generation oral alkylating agent temozolomide (TMZ) is the first-line chemotherapeutic drug used to treat of GBM, though patients often develop primary and secondary resistance, reducing its efficacy. Antioxidants represent promising and potential coadjutant agents as they can reduce excessive ROS formation derived from chemo- and radiotherapy, while decreasing pharmacological resistance. S-allyl-cysteine (SAC) has been shown to inhibit the proliferation of several types of cancer cells, though its precise antiproliferative mechanisms remain poorly investigated. To date, SAC effects have been poorly explored in GBM cells. Here, we investigated the effects of SAC in vitro, either alone or in combination with TMZ, on several toxic and modulatory endpoints-including oxidative stress markers and transcriptional regulation-in two glioblastoma cell lines from rats, RG2 and C6, to elucidate some of the biochemical and cellular mechanisms underlying its antiproliferative properties. SAC (1-750 µM) decreased cell viability in both cell lines in a concentration-dependent manner, although C6 cells were more resistant to SAC at several of the tested concentrations. TMZ also produced a concentration-dependent effect, decreasing cell viability of both cell lines. In combination, SAC (1 µM or 100 µM) and TMZ (500 µM) enhanced the effects of each other. SAC also augmented the lipoperoxidative effect of TMZ and reduced cell antioxidant resistance in both cell lines by decreasing the TMZ-induced increase in the GSH/GSSG ratio. In RG2 and C6 cells, SAC per se had no effect on Nrf2/ARE binding activity, while in RG2 cells TMZ and the combination of SAC + TMZ decreased this activity. Our results demonstrate that SAC, alone or in combination with TMZ, exerts antitumor effects mediated by regulatory mechanisms of redox activity responses. SAC is also a safe drug for testing in other models as it produces non-toxic effects in primary astrocytes. Combined, these effects suggest that SAC affords antioxidant properties and potential antitumor efficacy against GBM.
Collapse
Affiliation(s)
- Carolina Y Reyes-Soto
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Mexico City, Mexico
| | - Ricardo J Ramírez-Carreto
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Mexico City, Mexico
- Facultad de Química, Universidad Nacional Autónoma de México, 04510, Mexico, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Luz Belinda Ortíz-Alegría
- Laboratorio de Inmunología Experimental, Subdirección de Medicina Experimental, Instituto Nacional de Pediatría, Secretaría de Salud, 04530, Mexico City, Mexico
| | - Alejandro Silva-Palacios
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, SSA, 14080, Mexico City, Mexico
| | - Cecilia Zazueta
- Departamento de Biomedicina Cardiovascular, Instituto Nacional de Cardiología Ignacio Chávez, SSA, 14080, Mexico City, Mexico
| | - Sonia Galván-Arzate
- Departamento de Neuroquímica, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, S.S, 14269, Mexico City, Mexico
| | - Çimen Karasu
- Department of Medical Pharmacology, Cellular Stress Response and Signal Transduction Research Laboratory, Faculty of Medicine, Gazi University, 06500, Ankara, Turkey
| | - Isaac Túnez
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina y Enfermería, Instituto de Investigaciones Biomédicas Maimónides de Córdoba (IMIBIC)Universidad de CórdobaRed Española de Excelencia en Estimulación Cerebral (REDESTIM), 14071, Córdoba, Spain
| | - Alexey A Tinkov
- Laboratory of Molecular Dietetics, IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119435, Russia
- Departament of Elementology, and Department of Human Ecology and Bioelementology, Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russia
- Laboratory of Molecular Ecobiomonitoring and Quality Control, Yaroslavl State University, Yaroslavl, 150003, Russia
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Tessy López-Goerne
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico
| | - Anahí Chavarría
- Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, 06726, Mexico City, Mexico.
| | - Abel Santamaría
- Laboratorio de Nanotecnología y Nanomedicina, Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, 04960, Mexico City, Mexico.
- Facultad de Ciencias, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico.
| |
Collapse
|
2
|
Tocmo R, Parkin K. S-1-propenylmercaptocysteine protects murine hepatocytes against oxidative stress via persulfidation of Keap1 and activation of Nrf2. Free Radic Biol Med 2019; 143:164-175. [PMID: 31349040 DOI: 10.1016/j.freeradbiomed.2019.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
The onion-derived metabolite, S-1-propenylmercaptocysteine (CySSPe), protects against oxidative stress and exhibits anti-inflammatory effects by modulating cellular redox homeostasis. We sought to establish whether CySSPe activates nuclear factor erythroid 2-related factor 2 (Nrf2) and whether activation of Nrf2 by CySSPe involves modification of the Kelch-like ECH-associated protein-1 (Keap1) to manifest these effects. We found that CySSPe stabilized Nrf2 protein and facilitated nuclear translocation to induce expression of antioxidant enzymes, including NQO1, HO-1, and GCL. Moreover, CySSPe attenuated tert-butyl hydroperoxide-induced cytotoxicity and dose-dependently inhibited reactive oxygen species production. Silencing experiments using Nrf2-siRNA confirmed that CySSPe conferred protection against oxidative stress by activating Nrf2. CySSPe enhanced cellular pool of reduced glutathione (GSH) and improved GSH:GSSG ratio. Pretreatment of cells with l-buthionine-S,R-sulfoximine (BSO) confirmed that CySSPe increases de novo synthesis of GSH by upregulating expression of the GSH-synthesizing enzyme GCL. Treatment of cells with CySSPe elevated hydrogen sulfide (H2S) production. Inhibition of H2S-synthesizing enzymes, cystathionine-gamma-lyase (CSE) and cystathionine-beta-synthase (CBS), by pretreating cells with propargylglycine (PAG) and oxyaminoacetic acid (AOAA) revealed that H2S production was partially dependent on a CSE/CBS-catalyzed β-elimination reaction with CySSPe that likely produced 1-propenyl persulfide (RSSH). Depleting cells of their GSH pool by exposure to BSO and diethylmaleate attenuated H2S production, suggesting a GSH-dependent formation of H2S, likely via the reduction of RSSH by GSH. Finally, treatment of cells with CySSPe persulfidated Keap1, which may be the mechanism involved for the stabilization of Nrf2 by CySSPe. Taken together, our results showed that attenuation of oxidative stress by CySSPe is associated with its ability to produce H2S or RSSH, which persulfidates Keap1 and activates Nrf2 signaling. This study provides insights on the potential of CySSPe as an onion-derived dietary agent that modulates redox homeostasis and combats oxidative stress.
Collapse
Affiliation(s)
- Restituto Tocmo
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA.
| | - Kirk Parkin
- Department of Food Science, University of Wisconsin-Madison, Babcock Hall, 1605 Linden Drive, Madison, WI, 53706, USA
| |
Collapse
|
3
|
Green synthesized selenium nanoparticle as carrier and potent delivering agent of s-allyl glutathione: Anticancer effect against hepatocarcinoma cell line (HepG2) through induction of cell cycle arrest and apoptosis. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101207] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Anwar A, Gould E, Tinson R, Iqbal J, Hamilton C. Redox Modulation at Work: Natural Phytoprotective Polysulfanes From Alliums Based on Redox-Active Sulfur. ACTA ACUST UNITED AC 2018; 4:397-407. [PMID: 30416940 PMCID: PMC6208768 DOI: 10.1007/s40495-018-0153-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Purpose of review This article provides a brief overview of natural phytoprotective products of allium with a special focus on the therapeutic potential of diallyl polysulfanes from garlic, their molecular targets and their fate in the living organisms. A comprehensive overview of antimicrobial and anticancer properties of published literature is presented for the reader to understand the effective concentrations of polysulfanes and their sensitivity towards different human pathogenic microbes, fungi, and cancer cell lines. Recent findings The article finds polysulfanes potentials as new generation novel antibiotics and chemo preventive agent. The effective dose rates of polysulfanes for antimicrobial properties are in the range of 0.5-40 mg/L and for anticancer 20-100 μM. The molecular targets for these redox modulators are mainly cellular thiols as well as inhibition and/or activation of certain cellular proteins in cancer cell lines. Summary Antimicrobial and anticancer activities of polysulfanes published in the literature indicate that with further development, they could be promising candidates for cancer prevention due to their selectivity towards abnormal cells.
Collapse
Affiliation(s)
- Awais Anwar
- Ecospray Limited, Grange Farm, Hilborough, Thetford, Norfolk, IP26 5BT UK.,2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Emma Gould
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Ryan Tinson
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| | - Javaid Iqbal
- 3Department of Plant Protection, College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Chris Hamilton
- 2School of Pharmacy, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ UK
| |
Collapse
|
5
|
Shigemi Z, Furukawa Y, Hosokawa K, Minami S, Matsuhiro J, Nakata S, Watanabe T, Kagawa H, Nakagawa K, Takeda H, Fujimuro M. Diallyl trisulfide induces apoptosis by suppressing NF-κB signaling through destabilization of TRAF6 in primary effusion lymphoma. Int J Oncol 2015; 48:293-304. [PMID: 26647777 DOI: 10.3892/ijo.2015.3247] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/02/2015] [Indexed: 11/06/2022] Open
Abstract
The allyl sulfides, including diallyl sulfide (DAS), diallyl disulfide (DAD), and diallyl trisulfide (DAT), contained in garlic and members of the Allium family, have a variety of pharmacological activities. Therefore, allyl sulfides have been evaluated as potential novel chemotherapeutic agents. Here, we found that DAT inhibited nuclear factor-κB (NF-κB) signaling and induced apoptosis in primary effusion lymphoma (PEL), a subtype of non-Hodgkin's B-cell lymphoma caused by Kaposi's sarcoma-associated herpesvirus (KSHV). We examined the cytotoxic effects of DAS, DAD and DAT on PEL cells. DAT significantly reduced the viability of PEL cells compared with uninfected B-lymphoma cells, and induced the apoptosis of PEL cells by activating caspase-9. DAT induced stabilization of IκBα, and suppressed NF-κB transcriptional activity in PEL cells. We examined the mechanism underlying DAT-mediated IκBα stabilization. The results indicated that DAT stabilized IκBα by inhibiting the phosphorylation of IκBα by the IκB kinase (IKK) complex. Furthermore, DAT induced proteasomal degradation of TRAF6, and DAT suppressed IKKβ-phosphorylation through downregulation of TRAF6. It is known that activation of NF-κB is essential for survival of PEL cells. In fact, the NF-κB inhibitor BAY11-7082 induced apoptosis in PEL cells. In addition, DAT suppressed the production of progeny virus from PEL cells. The administration of DAT suppressed the development of PEL cells and ascites in SCID mice xenografted with PEL cells. These findings provide evidence that DAT has antitumor activity against PEL cells in vitro and in vivo, suggesting it to be a novel therapeutic agent for the treatment of PEL.
Collapse
Affiliation(s)
- Zenpei Shigemi
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Yoshiki Furukawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Kohei Hosokawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Setsuya Minami
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Jumpei Matsuhiro
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Shiori Nakata
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Tadashi Watanabe
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Hiroki Kagawa
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| | - Koji Nakagawa
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kitaku, Sapporo 060-0812, Japan
| | - Hiroshi Takeda
- Department of Pathophysiology and Therapeutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Kitaku, Sapporo 060-0812, Japan
| | - Masahiro Fujimuro
- Department of Cell Biology, Kyoto Pharmaceutical University, Yamashinaku, Kyoto 607-8412, Japan
| |
Collapse
|
6
|
4-[2-Allylsulfanyl-1-(carboxymethyl-carbamoyl)-ethylcarbamoyl]-2-amino-butyric acid: evaluation as topoisomerase inhibitor using in vitro assay and molecular docking study. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1263-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
7
|
Gómez-Sierra T, Molina-Jijón E, Tapia E, Hernández-Pando R, García-Niño WR, Maldonado PD, Reyes JL, Barrera-Oviedo D, Torres I, Pedraza-Chaverri J. S-allylcysteine prevents cisplatin-induced nephrotoxicity and oxidative stress. J Pharm Pharmacol 2014; 66:1271-81. [DOI: 10.1111/jphp.12263] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 03/23/2014] [Indexed: 11/29/2022]
Abstract
Abstract
Objectives
Cisplatin (CP) is an antineoplastic agent that induces nephrotoxicity and oxidative stress. S-allylcysteine (SAC) is a garlic-derived antioxidant. This study aims to explore whether SAC protects against CP-induced nephrotoxicity in rats.
Methods
In the first stage, the SAC protective dose was determined by measuring renal damage and the oxidative stress markers malondialdehyde, oxidized proteins and glutathione in rats injected with CP. In the second stage, the effect of a single dose of SAC on the expression of nuclear factor-erythroid 2-related factor-2 (Nrf2), protein kinase C beta 2 (PKCβ2) and nicotinamide adenine dinucleotide phosphate oxidase subunits (p47phox and gp91phox) was studied. In addition, the effect of SAC on oxidative stress markers and on the activity of catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR) in isolated proximal and distal tubules were evaluated.
Key findings
SAC (25 mg/kg) prevented the CP-induced renal damage and attenuated CP-induced decrease in Nrf2 levels and increase in PKCβ2, p47phox and gp91phox expression in renal cortex and oxidative stress and decrease in the activity of CAT, GPx and GR in proximal and distal tubules.
Conclusions
These data suggest that SAC provides renoprotection by attenuating CP-induced oxidative stress and decrease in the activity of CAT, GPx and GR.
Collapse
Affiliation(s)
- Tania Gómez-Sierra
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Eduardo Molina-Jijón
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Edilia Tapia
- Laboratory of Renal Pathophysiology, Department of Nephrology, National Institute of Cardiology, DF, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ‘Salvador Zubirán’, DF, Mexico
| | - Wylly Ramsés García-Niño
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Perla D Maldonado
- Laboratory of Vascular Pathology, National Institute Neurology and Neurosurgery ‘Manuel Velasco Suárez’, Mexico City, DF, Mexico
| | - José Luis Reyes
- Departament of Physiology, Biophysics and Neuroscience, Center for Research and Advanced Studies, National Polytechnic Institute (Cinvestav-IPN), DF, Mexico
| | - Diana Barrera-Oviedo
- Department of Pharmacology, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - Ismael Torres
- Animal Care Unit, Faculty of Medicine, National Autonomous University of Mexico (UNAM), DF, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), DF, Mexico
| |
Collapse
|
8
|
Wang HC, Pao J, Lin SY, Sheen LY. Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 2013; 1271:44-52. [PMID: 23050963 PMCID: PMC3499657 DOI: 10.1111/j.1749-6632.2012.06743.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Skin cancer is a serious concern whose incidence is increasing at an alarming rate. Allyl sulfides—i.e., sulfur metabolites in garlic oil—have been demonstrated to have anticancer activity against several cancer types, although the mechanisms underlying these effects remain enigmatic. Our previous study showed that diallyl trisulfide (DATS) is more potent than mono- and disulfides against skin cancer. DATS inhibits cell growth of human melanoma A375 cells and basal cell carcinoma (BCC) cells by increasing the levels of intracellular reactive oxygen species (ROS) and DNA damage and by inducing G2/M arrest, endoplasmic reticulum (ER) stress, and mitochondria-mediated apoptosis, including the caspase-dependent and -independent pathways. This short review focuses on the molecular mechanisms of garlic-derived allyl sulfides on skin cancer prevention.
Collapse
Affiliation(s)
- Hsiao-Chi Wang
- Institute of Food Science and Technology, National Taiwan University, Taipei, ROC
| | | | | | | |
Collapse
|
9
|
Diallyl trisulfide induces apoptosis in human breast cancer cells through ROS-mediated activation of JNK and AP-1. Biochem Pharmacol 2012; 84:1241-50. [DOI: 10.1016/j.bcp.2012.08.024] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/20/2022]
|
10
|
Hsieh CL, Chang CH, Wang HE, Chen KC, Chyau CC, Peng RY. Therapeutic discrepancy of diallyl trisulfide and diallyl disulfide in part may be attributed to the resonance-stabilization of allylic cations and trisulfide anions. J Sulphur Chem 2012. [DOI: 10.1080/17415993.2012.714378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Chiu-Lan Hsieh
- a Graduate Institute of Biotechnology, Changhua University of Education , 1 Jin-De Rd., Changhua , 50007 , Taiwan
| | - Chi-Huang Chang
- b Research Institute of Biotechnology, Hungkuang University , 34, Chung-Chie Rd., Shalu County, Taichung Hsien , Taiwan 4330
| | - Hui-Er Wang
- c Department of Food and Applied Technology , Hungkuang University , 34, Chung-Chie Rd., Shalu County, Taichung Hsien , Taiwan 4330
| | - Kuan-Chou Chen
- d Department of Urology , Taipei Medical University Shuang-Ho Hospital, Taipei Medical University , 250, Wu-Shing St., Xin-Yi District, Taipei , Taiwan
| | - Charng-Cherng Chyau
- b Research Institute of Biotechnology, Hungkuang University , 34, Chung-Chie Rd., Shalu County, Taichung Hsien , Taiwan 4330
| | - Robert Y. Peng
- b Research Institute of Biotechnology, Hungkuang University , 34, Chung-Chie Rd., Shalu County, Taichung Hsien , Taiwan 4330
- e Graduate Institute of Medical Sciences, Taipei Medical University , 250 Wu-Shing St., Sin-Yi District, Taipei 106 , Taiwan
| |
Collapse
|
11
|
Caro AA, Adlong LW, Crocker SJ, Gardner MW, Luikart EF, Gron LU. Effect of garlic-derived organosulfur compounds on mitochondrial function and integrity in isolated mouse liver mitochondria. Toxicol Lett 2012; 214:166-74. [PMID: 22960305 DOI: 10.1016/j.toxlet.2012.08.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/21/2012] [Accepted: 08/22/2012] [Indexed: 11/19/2022]
Abstract
The objectives of this work were to evaluate the direct effects of diallysulfide (DAS) and diallyldisulfide (DADS), two major organosulfur compounds of garlic oil, on mitochondrial function and integrity, by using isolated mouse liver mitochondria in a cell-free system. DADS produced concentration-dependent mitochondrial swelling over the range 125-1000μM, while DAS was ineffective. Swelling experiments performed with de-energized or energized mitochondria showed similar maximal swelling amplitudes. Cyclosporin A (1μM), or ethylene glycol-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid (EGTA, 1mM) were ineffective in inhibiting DADS-induced mitochondrial swelling. DADS produced a minor (12%) decrease in mitochondrial membrane protein thiols, but did not induce clustering of mitochondrial membrane proteins. Incubation of mitochondria with DADS (but not DAS) produced an increase in the oxidation rate of 2',7' dichlorofluorescein diacetate (DCFH-DA), together with depletion of reduced glutathione (GSH) and increased lipid peroxidation. DADS (but not DAS) produced a concentration-dependent dissipation of the mitochondrial membrane potential, but did not induce cytochrome c release. DADS-dependent effects, including mitochondrial swelling, DCFH-DA oxidation, lipid peroxidation and loss of mitochondrial membrane potential, were inhibited by antioxidants and iron chelators. These results suggest that DADS causes direct impairment of mitochondrial function as the result of oxidation of the membrane lipid phase initiated by the GSH- and iron-dependent generation of oxidants.
Collapse
Affiliation(s)
- Andres A Caro
- Chemistry Department, Hendrix College, Conway, AR, United States.
| | | | | | | | | | | |
Collapse
|
12
|
Jacob C, Battaglia E, Burkholz T, Peng D, Bagrel D, Montenarh M. Control of oxidative posttranslational cysteine modifications: from intricate chemistry to widespread biological and medical applications. Chem Res Toxicol 2011; 25:588-604. [PMID: 22106817 DOI: 10.1021/tx200342b] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cysteine residues in proteins and enzymes often fulfill rather important roles, particularly in the context of cellular signaling, protein-protein interactions, substrate and metal binding, and catalysis. At the same time, some of the most active cysteine residues are also quite sensitive toward (oxidative) modification. S-Thiolation, S-nitrosation, and disulfide bond and sulfenic acid formation are processes which occur frequently inside the cell and regulate the function and activity of many proteins and enzymes. During oxidative stress, such modifications trigger, among others, antioxidant responses and cell death. The unique combination of nonredox function on the one hand and participation in redox signaling and control on the other has placed many cysteine proteins at the center of drug design and pesticide development. Research during the past decade has identified a range of chemically rather interesting, biologically very active substances that are able to modify cysteine residues in such proteins with huge efficiency, yet also considerable selectivity. These agents are often based on natural products and range from simple disulfides to complex polysulfanes, tetrahydrothienopyridines, α,β -unsaturated disulfides, thiuramdisulfides, and 1,2-dithiole-3-thiones. At the same time, inhibition of enzymes responsible for posttranslational cysteine modifications (and their removal) has become an important area of innovative drug research. Such investigations into the control of the cellular thiolstat by thiol-selective agents cross many disciplines and are often far from trivial.
Collapse
Affiliation(s)
- Claus Jacob
- Division of Bioorganic Chemistry, School of Pharmacy, Saarland University, D-66123 Saarbruecken, Germany.
| | | | | | | | | | | |
Collapse
|
13
|
Emerging role of hydrogen sulfide in health and disease: critical appraisal of biomarkers and pharmacological tools. Clin Sci (Lond) 2011; 121:459-88. [PMID: 21843150 DOI: 10.1042/cs20110267] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
H2S (hydrogen sulfide) is a well known and pungent gas recently discovered to be synthesized enzymatically in mammalian and human tissues. In a relatively short period of time, H2S has attracted substantial interest as an endogenous gaseous mediator and potential target for pharmacological manipulation. Studies in animals and humans have shown H2S to be involved in diverse physiological and pathophysiological processes, such as learning and memory, neurodegeneration, regulation of inflammation and blood pressure, and metabolism. However, research is limited by the lack of specific analytical and pharmacological tools which has led to considerable controversy in the literature. Commonly used inhibitors of endogenous H2S synthesis have been well known for decades to interact with other metabolic pathways or even generate NO (nitric oxide). Similarly, commonly used H2S donors release H2S far too quickly to be physiologically relevant, but may have therapeutic applications. In the present review, we discuss the enzymatic synthesis of H2S and its emerging importance as a mediator in physiology and pathology. We also critically discuss the suitability of proposed 'biomarkers' of H2S synthesis and metabolism, and highlight the complexities of the currently used pharmacological H2S 'donor' molecules and 'specific' H2S synthesis inhibitors in their application to studying the role of H2S in human disease.
Collapse
|
14
|
Hormetics: dietary triggers of an adaptive stress response. Pharm Res 2011; 28:2680-94. [PMID: 21818712 DOI: 10.1007/s11095-011-0551-1] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 07/27/2011] [Indexed: 12/31/2022]
Abstract
A series of dietary ingredients and metabolites are able to induce an adaptive stress response either by generation of reactive oxygen species (ROS) and/or via activation of the Nrf2/Keap1 stress response network. Most of the molecules belong to activated Michael acceptors, electrophiles capable to S-alkylate redox sensitive cysteine thiols. This review summarizes recent advances in the (re)search of these compounds and classifies them into distinct groups. More than 60 molecules are described that induce the Nrf2 network, most of them found in our daily diet. Although known as typical antioxidants, a closer look reveals that these molecules induce an initial mitochondrial or cytosolic ROS formation and thereby trigger an adaptive stress response and hormesis, respectively. This, however, leads to higher levels of intracellular glutathione and increased expression levels of antioxidant enzymes such as glutathione peroxidase, thioredoxin reductase, and superoxide dismutase. According to this principle, the author suggests the term hormetics to describe these indirect antioxidants.
Collapse
|
15
|
Wang HC, Yang JH, Hsieh SC, Sheen LY. Allyl sulfides inhibit cell growth of skin cancer cells through induction of DNA damage mediated G2/M arrest and apoptosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2010; 58:7096-7103. [PMID: 20459099 DOI: 10.1021/jf100613x] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Diallyl sulfide (DAS), diallyl disulfide (DADS), and diallyl trisulfide (DATS), extracted from crushed garlic by steam-distillation, have been reported to provide the anticancer activity in several cancer types. However, their mechanisms of effects on skin cancer cells remain unclear. Therefore, we used human melanoma A375 cells and basal cell carcinoma cells as the models to elucidate the effects of these three allyl sulfides. Basal cell carcinoma (BCC) is known to be the most prevalent type of skin cancer, and melanoma is the most lethal form. We found that DATS revealed better growth inhibition of A375 and BCC cells than DADS and DAS did. We further demonstrated that DATS increased intracellular reactive oxygen species (ROS) generation, induced cytosolic Ca(2+) mobilization, and decreased mitochondrial membrane potential (DeltaPsim). Western blot results showed the concordance for the expression of molecules involved in G(2)/M arrest and apoptosis observed by cell cycle and cell viability analysis. Moreover, we detected the activation of p53 pathway in response to the oxidative DNA damage. DATS also displayed selective target of growth inhibition between skin cancer cells and normal keratinocyte HaCaT cells. Taken together, these results suggest that DATS is a potential anticancer compound for skin cancer.
Collapse
Affiliation(s)
- Hsiao Chi Wang
- Graduate Institute of Food Science and Technology, National Taiwan University, No 1, Sec 4, Roosevelt Road, Taipei 106, Taiwan
| | | | | | | |
Collapse
|
16
|
Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci U S A 2009; 106:20097-102. [PMID: 19897733 DOI: 10.1073/pnas.0902675106] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The capsaicin receptor TRPV1, one of the major transduction channels in the pain pathway, integrates information from extracellular milieu to control excitability of primary nociceptive neurons. Sensitization of TRPV1 heightens pain sensation to moderately noxious or even innocuous stimuli. We report here that oxidative stress markedly sensitizes TRPV1 in multiple species' orthologs. The sensitization can be recapitulated in excised inside-out membrane patches, reversed by strong reducing agents, and blocked by pretreatment with maleimide that alkylates cysteines. We identify multiple cysteines required for full modulation of TRPV1 by oxidative challenges. Robust oxidative modulation recovers the agonist sensitivity of receptors desensitized by prolonged exposure to capsaicin. Moreover, oxidative modulation operates synergistically with kinase or proton modulations. Thus, oxidative modulation is a robust mechanism tuning TRPV1 activity via covalent modification of evolutionarily conserved cysteines and may play a role in pain sensing processes during inflammation, infection, or tissue injury.
Collapse
|